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Abstract

Recently, device-free WiFi CSI-based human 
behavior recognition has attracted a great 
amount of interest as it promises to provide a 
ubiquitous sensing solution by using the per-
vasive WiFi infrastructure. While most existing 
solutions are pattern-based, applying machine 
learning techniques, there is a recent trend of 
developing accurate models to reveal the under-
lining radio propagation properties and exploit 
models for fine-grained human behavior recog-
nition. In this article, we first classify the exist-
ing work into two categories: pattern-based and 
model-based recognition solutions. Then we 
review and examine the two approaches togeth-
er with their enabled applications. Finally, we 
show the favorable properties of model-based 
approaches by comparing them using human 
respiration detection as a case study, and argue 
that our proposed Fresnel zone model could be 
a generic one with great potential for device-free 
human sensing using fine-grained WiFi CSI.

Introduction
Radio-based human behavior sensing has become 
an active research area due to the pervasive-
ness of such wireless signals. While most exist-
ing work focuses on device-based scenarios,1 
recently device-free sensing solutions have been 
increasingly popular because they significantly 
improve the usability and practicality of indoor 
applications, such as intrusion detection, elder 
care, and healthcare. The earliest work on device-
free human sensing, called “sensorless sensing,” 
was introduced by Woyach et al. in 2006 [1]. By 
observing human motion and the resultant sig-
nals in a wireless sensor network, Woyach et al. 
noticed that the motion of a human can cause a 
series of signal fading spots, and further demon-
strated the possibility and promise of using wire-
less sensors for human presence detection in a 
contact-free manner. Soon after that, in 2007, 
Youssef et al. [2] experimentally verified that 
human motion causes variations on the received 
signal strength indicator (RSSI), and simple fea-
tures like moving average and moving variance 
on RSSI can be used to detect human presence. 
They also demonstrated that it is possible to track 
people’s location exploiting the fact that the RSSI 
patterns of different locations behave different-
ly, and thus can act as a fingerprint to estimate 
a subject’s probable location. Meanwhile, Zhang 

et al. proposed a geometric-model-based method 
of localization and tracking [3] by relating a link’s 
RSS variance to its line-of-sight (LoS) location rel-
ative to the human subjects present. These early 
works show the possibilities that both the RF vari-
ation pattern and the physical model can be used 
for human tracking and localization. However, 
as the first step toward RF-based human sensing, 
these works are still relatively preliminary. 

Exposed at the physical layer, channel state 
information (CSI) provides finer-grained informa-
tion (with amplitude and phase) than RSSI [4]. 
With the CSI measurements accessible to the 
public in 2010 in commodity WiFi chipsets (Intel 
5300, Atheros 9580, etc.), the research in WiFi-
based device-free human sensing has accelerated. 
Some RSSI-originated human sensing applications, 
such as indoor localization [5], are enhanced 
with CSI information and gain great performance 
improvement. Many other human behavior rec-
ognition applications, which are hard to differen-
tiate using RSSI, also benefit from the capability 
of fine-grained CSI, including gesture control [6], 
gait identification [7], fall detection [8, 13], track-
ing [9], activity recognition [10, 11], vital signs 
monitoring [12, 14], and so on. From a technical 
perspective, research efforts have been devoted 
not only to feature engineering and pattern classi-
fication (pattern-based approach) [5, 6, 8, 10, 12, 
13] but also to modeling the relationship between 
signal space and human activity space [7, 8, 
11, 14, 15] (model-based approach) to achieve 
more fine-grained human behavior sensing using 
WiFi signals. The above works can be catego-
rized according to two dimensions: the problem 
domain and the solution domain, as shown in Fig. 
1. While most of the works fall into pattern-based 
or model-based approaches, some [7, 11] use 
the combination of the two approaches as the 
solution.

In this article, we argue that while pat-
tern-based approaches are intuitive and straight-
forward for coarse-grained sensing applications, 
more complex and fine-grained human behavior 
recognition requires a more general RF model to 
accurately characterize the relationship between 
human motion and the resultant signal variations. 
In this regard, we first introduce the Fresnel zone 
model for indoor human sensing, and would 
like to show the superiority of Fresnel-zone-
model-based human sensing over pattern-based 
approaches. We argue that Fresnel-zone-mod-
el-based approaches have obvious advantages 
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and great potential in achieving centimeter and 
even millimeter scale human activity sensing [14], 
enabling a wide spectrum of applications.

Pattern-Based Approaches
Generally speaking, human sensing techniques 
aim to detect one’s rich context information, 
including presence, location, moving trajectory, 
activity, gesture, identity, vital sign, interaction 
with objects, and so on. The goal of RF-based 
human sensing is behavior recognition based on 
the radio signals collected on the RF receiver. 

To build a human behavior sensing system 
using radio signals, the connection between sig-
nal variations and human activities must be estab-
lished. If the signal variation patterns have unique 
and consistent relations with certain human activ-
ities, it is possible for a pattern-based (or learn-
ing-based) method to recognize human behaviors 
accurately from signal patterns. 

Feature Selection

The key to designing pattern-based approaches is 
to observe and find discriminative patterns to con-
struct features and differentiate different human 
behaviors of interest. The features can be very 
simple or sophisticated, depending on the com-
plexity of the recognition task and the required 
granularity.

For simple sensing tasks, feature selection is 
often based on intuition or direct observation. 
When the number of behaviors that need to be 
distinguished is small, it is often easy to find reg-
ular but differentiable signal patterns. In this case, 
one or two features may be enough to distinguish 
among behaviors. For example, for motion detec-
tion [2], we observe that any motion causes signal 
fluctuations. Features such as moving average and 
moving variance are good indicators; these simple 
features are often enough for presence sensing 
purposes.

As both the number of human behaviors and 
the sensing granularity increase, it becomes chal-
lenging to find one-to-one mappings between 
behaviors and signal patterns. One or two sim-
ple features are not enough for this task any-

more. In this case, more features are needed 
to increase the dimension of feature space. For 
example, WiFall uses seven features for fall detec-
tion [8], and WifiU employs a total of 170 fea-
tures for gait recognition [7]. Meanwhile, a simple 
threshold-based method may no longer work, so 
more powerful non-linear classifiers are needed. 
Often, advanced techniques such as Dynamic 
Time Wrapper (DTW) are applied to increase the 
robustness of classification, as shown in [6, 10]. 
Signal statistic characteristics, such as normalized 
standard deviation, median absolute deviation, 
and amplitude histogram of the CSI waveform, 
are the most common candidate features [8, 10]. 
More sophisticated features could be obtained 
with the help of physical models [7, 11]. These 
features are then fed into general-purpose classi-
fiers such as support vector machines (SVMs) [8] 
or specially designed classifiers for classification. 
For pattern-based algorithms with big numbers 
of features, people began to lose understanding 
of the relationship between signal features and 
human behaviors. Therefore, designing a human 
behavior sensing system requires many rounds 
of feature adjustments in the feature selection 
process, which is often labor-intensive but with 
bounded classification accuracy.

Pattern Consistency

Pattern-based human sensing approaches rely on 
consistent and differentiable signal patterns for 
behavior recognition. This means the same pat-
terns are always expected for a specific behav-
ior. If the signal patterns are inconsistent for the 
same behavior(e.g., the same activity performed 
at several different locations), the sensing system 
may face severe performance problems. Differ-
ent from wearable sensors that are attached to 
human bodies in fixed positions, contact-free pas-
sive sensing with WiFi signals does not assume a 
fixed position for a human body with respect to 
WiFi devices. As a result, even the same activi-
ty causes very different signal patterns at differ-
ent locations. Besides the fact that the distance 
between a subject and WiFi devices affects the 
signal amplitude received at the receiver, the sub-
ject may interact with multipath differently at each 
location by blocking different path components. 
Even worse, the orientation of the subject also 
matters [3]. For example, in E-eye [10] the activity 
profiles are requested to be associated with a few 
locations in the home, so activities performed at 
different locations might not be well recognized.

The converse problem exists in the case when 
several behaviors share similar signal patterns. This 
is becoming common in today’s sensing tasks, 
which require fine-grained sensing capabilities. 
For example, in gait recognition [7], conventional 
statistical indicators cannot be used as features 
because the values are almost identical for subtle 
movements. More discriminative features such as 
gait cycle length, estimated footstep length, the 
maximum, minimum, average, and variance for 
torso and leg speeds during the gait cycle, as well 
as spectrogram signatures are extracted from the 
time-frequency domain with the help of models.

In the above two cases, the pattern-based 
approaches face limitations. However, if certain 
features can be found through accurate models 
— for instance, the histogram distribution feature 

Figure 1. Design space of existing works: problem domain vs. solution domain.
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used in E-eye [10] is replaced by the CSI frequen-
cy feature in CARM [11] with the help of the 
CSI-Speed model — the performance of activity 
recognition is less affected by the subject’s rela-
tive location. Please note that this is not an easy 
job using pure empirical observation.

Scalability

The performance of pattern-based approaches 
relies on the data samples trained and tested. 
Often, a pattern-based sensing system is built on 
top of the model learned from a small training 
dataset of a few people collected at a few loca-
tions, and it is thus difficult to scale, suffering per-
formance degradation when deployed in rooms 
with different sizes or layouts, or changing the 
positioning of each WiFi device.

Despite the drawbacks in feature selection, 
environmental dependence, and scalability, pat-
tern-based approaches have been very popular 
and successful in device-free human behavior 
sensing applications because they are not only 
conceptually intuitive but also relatively simple 
to design, for both data collection and algorithm 
development.

Model-Based Approaches
Different from pattern-based approaches, which 
often involve nontrivial training effort and could 
only recognize a limited set of pre-defined activ-
ities, model-based approaches are based on the 
understanding and abstraction of a mathemat-
ical relationship among human locations and/
or behaviors, the received signals, and the sur-
rounding environment. In the case of device-free 
human sensing with WiFi CSI, the aim of modeling 
is to relate the signal space to the physical space 
including human and environment, and reveal 
the physical law characterizing the mathematical 
relationship between the received CSI signals and 
the sensing target.

Models in the Wild

Compared to the study of pattern-based 
approaches, there has been much less research 
on model-based device-free human behavior 
sensing with WiFi devices. In this section, we first 
briefly present the few model-based human sens-
ing research works that have appeared in recent 
years, and then introduce our proposed Fresnel 
zone model and its applications in human sensing.

CSI-Speed Model: Wang et al. proposed the 
CSI-speed model, which quantifies the correlation 
between CSI power (amplitude) dynamics and 
the speed of path length change of the reflected 
paths caused by human movement [11]. They 
find that the total CFR power is the sum of a 
constant offset and a set of sinusoids, where the 
frequencies of the sinusoids are functions of the 
speeds of path length changes.

The importance of the CSI-speed model lies 
in the fact that it mathematically links the CSI 
with the speed of reflected path length change 
due to human body movement. In such a way, 
the path length change rate information can be 
extracted from CSI power amplitude by methods 
like short time Fourier transform (STFT). However, 
there is no mathematical mapping from the path 
length change rate to the human motion speed 
and human activities. As a consequence, approx-

imated speed information is used as input to a 
pattern-based learning algorithm for behavior rec-
ognition. In the CSI-speed-model-based activity 
recognition system CARM, Wang et al. assume 
that the human motion is half the path length 
change speed. Although this approximation is not 
very accurate, for a total of eight predefined daily 
activities, CARM can differentiate and recognize 
them well [11].

Based on the CSI-speed model, Widar by Qian 
et al. attempts to build a CSI-Mobility model that 
quantifies the relationship between CSI dynam-
ics and a user’s location and velocity for precise 
tracking [9]. The CSI-Mobility model tries to fill 
the gap between the path length change rate and 
the human moving velocity. As the CSI-speed 
model provides no direction information, the 
CSI-mobility model estimates the velocity by for-
mulating it into an optimization problem. With the 
extended model capability, Widar is capable of 
tracking a human’s walking direction and velocity. 
However, the lack of initial position prevents the 
precise mapping from speed to velocity, hinder-
ing accurate trajectory tracking.

Angle of Arrival Model: Angle of arrival (AoA) 
measurement is a method of determining the 
direction of propagation of an RF wave incident 
on an antenna array. AoA can be estimated by 
the phase difference pattern across antennas 
of the array. The resolution of AoA grows with 
the number of antennas. Normally, five to eight 
antennas are required for a good AoA estimation. 
Recently, subspace-based methods such as the 
MUSIC algorithm have been adopted to obtain 
finer angle estimation. With two or more AoA 
measurements from known points, the location 
of the signal source can be computed by trian-
gulation. 

In device-free WiFi sensing, the received signal 
via different reflected paths off a moving person 
can be viewed coming from one virtual source 
with the same angle. For a person to be success-
fully located using the AoA method, the target’s 
angles to two RF receivers should be obtained. 
Li et al. proposed a device-free localization sys-
tem, MaTrack [15]. The rationale for obtaining 
the AoA of a moving target is that the signals 
reflected from it keep changing in angle and time 
delay, which are incoherent with the reflected sig-
nals from environmental static objects. Although 
MaTrack can be used to infer the AoA of a mov-
ing target, its angle resolution is not fine enough 
to separate the reflected paths of the human 
body, which limits its application in human sens-
ing tasks other than localization.

Fresnel Zone Model: The Fresnel zone con-
cept originated from Augustin Fresnel’s research 
on light’s interference and diffraction in the early 
19th century. When applied in a radio propa-
gation area, Fresnel zones refer to the series of 
concentric ellipsoids with two foci corresponding 
to the transmitter and receiver antennas. Radio 
waves traveling through the first Fresnel zone 
are all in-phase, enhancing the signal strength 
received at the receiver. Successive Fresnel zones 
alternately provide destructive and constructive 
interference to the received signal strength at the 
receiver side [14]. 

Different from previous work that applies the 
Fresnel-Kirchhoff knife-edge diffraction model for 

Radio waves traveling 

through the first Fresnel 

zone are all in-phase, 

enhancing the signal 

strength received at 

the receiver. Successive 

Fresnel zones alternately 

provide destructive and 

constructive interference 

to the received signal 

strength at the  

receiver side.



IEEE Communications Magazine • October 201794

human sensing, our Fresnel zone model expands 
the sensing range to the vast regions outside of the 
first Fresnel zone. In the device-free passive sens-
ing scenario, a pair of WiFi transceivers are placed 
at the fixed location. When an object appears in 
the Fresnel zones in free space, the radio signals 
can be viewed as traveling from the transmitter to 
the receiver via two paths: one that goes directly 
(the LoS path) and another that is reflected by 
the object (the reflected path). The two signals 
combine to create a superimposed signal at the 
receiver side. When the object moves, while the 
signal traveling via the LoS remains the same, the 
signal reflected by the object changes over time. 
As the length of the reflected path changes, the 
relative phase difference between the LoS signal 
and the reflected signal changes accordingly, and 
the received signal will present peaks or valleys 
when the object crosses the boundaries of the 
Fresnel zones. The situation is similar in a real mul-
tipath-rich environment. In this case the Fresnel 
zone model can be approximated in such a way 
that the LoS signal is superimposed with the multi-
ple reflected signals from the environmental static 
objects, and the signals reflected from the moving 
object are unified and simplified into one dom-
inant signal component that changes over time. 
Mathematically, the Fresnel zone model charac-
terizes the relationship between the geometrical 
position of the sensing target and the induced CSI 
power amplitude variations caused by the motion 
of the target.

The power of the Fresnel zone model is that 
it not only reveals the relationship between the 
centimeter-scale or even millimeter-scale human 
activities and the received WiFi signals, but also 
describes how the received signals vary for a 
human activity performed at different locations 
and orientations [14]. This capability makes the 
Fresnel zone model location-aware, different from 
the CSI-speed or CSI-Mobility model.

In order to show how the Fresnel zone model 
can be used for human behavior recognition, we 
leverage the properties of multiple subcarriers in 
the WiFi received signals and build the human 
indoor walking direction and distance estimation 
system WiDir [14].

For multiple subcarriers with different wave-
lengths in commodity WiFi devices, their corre-
sponding Fresnel zones are of slightly different 
sizes. As a consequence of a person moving 
inward/outward, it would cross the Fresnel zone 
boundaries of different subcarriers in sequence 
and generate increasing/decreasing time delays 
between a fixed pair of subcarriers. Then the 
inward/outward walking direction can be deter-
mined by inspecting the CSI time delay between 
two WiFi subcarriers. Furthermore, as cross-
ing Fresnel zone boundaries corresponds to a 
series of peaks and valleys in the CSI waveform, 
WiDir counts the peaks and valleys in each axis 
for distance estimation. With two pairs of WiFi 
devices, both direction and distance in the 2D 
plane can be estimated directly and accurately. 
The WiDir example showcases that sensing the 
indoor human walking direction can be achieved 
leveraging only the Fresnel zone model. It is dif-
ferent from the CSI-speed or CSI-mobility model 
for human behavior recognition, where only the 
reflected path change rate is extracted from the 

model, while the human speed or human activ-
ities are approximately obtained using the path 
change rate and other information.

Discussion

Through the introduction of the above three lines 
of model-based human sensing research, it can 
be seen that model-based approaches have the 
advantage of leveraging physical laws and having 
clear physical interpretations. Hence, we could 
use the derived models to accurately extract cer-
tain parameters from the received signals and 
solve a class of problems. For example, the CSI-
speed model can precisely sense the speed infor-
mation, which can support applications such as 
activity recognition, gait recognition, and tracking. 
The AoA model is geometry-related, which suits 
localization applications. While the above mod-
els generally target at obtaining a specific output 
such as speed, velocity or angle, Fresnel Zone 
model seems to be more general as the basis for 
understanding how human motion affects the 
received RF signal and further designing various 
human behavior recognition systems, as can be 
seen in the walking direction sensing application 
as well as the human respiration detection appli-
cation, which is presented in the next section.

Case Study: Respiration Sensing
In order to demonstrate the generality and 
potential of our proposed Fresnel zone model in 
human behavior recognition, in this section we 
use human respiration detection as an application 
example to show how the existing pattern-based 
approaches and our proposed solution achieve 
the goal. We further compare the advantages 
and drawbacks of these approaches, and argue 
that our proposed Fresnel zone model is not only 
general in supporting a wide spectrum of appli-
cations, but also very powerful in revealing the 
sensing limit as well as the complex relationship 
among human motion/location/orientation, the 
received CSI of different subcarriers, as well as the 
physical environment including WiFi devices.

Human respiration detection using commod-
ity WiFi CSI has been explored in recent years. 
In [12], by observing the obvious periodic sinu-
soid-like patterns that appear in the received 
WiFi CSI across different subcarriers, which 
seemed to have a high correlation with human 
respiration, Liu et al. developed a WiFi CSI pat-
tern-based vital sign monitoring system. In this 
work, it is assumed that the sinusoid-like pattern 
exists in at least one of the subcarriers; they 
focus on proposing methods for signal process-
ing and respiration rate extraction, which include 
the steps of filtering, peak-to-peak time interval 
measurement, and power spectral density (PSD)-
based K-means clustering. To ensure that the 
appropriate subcarriers are selected, a variance 
with a predefined threshold is employed before 
processing [12].

With the Fresnel zone model, we reexamined 
the same human respiration sensing problem 
[14]. According to the WiFi signal propagation 
properties in the Fresnel zones, when an object 
crosses a series of Fresnel zones, the received sig-
nal shows a continuous sinusoidal-like wave. If 
a moving object causes a reflected signal path 
length change shorter than a wavelength (e.g., 
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5.7 cm for 5.24 GHz), the received signal is just a 
fragment of the sinusoidal cycle depending on the 
location of the object in the Fresnel zones. As the 
human chest motion displacement due to respi-
ration is around 5 mm and the resultant reflected 
path length change is far less than a wavelength, it 
roughly corresponds to a phase change of 60° in 
one sinusoidal cycle [14]. Given the phase change 
in a sinusoidal cycle (as shown in Fig. 2b), both 
the angle of phase change and its position affects 
the shape of the resultant signal waveform. Appar-
ently, in order to make the respiration rate easy to 
extract correctly, it is expected that the angle not 
only covers a large range but also lies fully in the 
monotonically changing fragment of the cosine 
wave. Based on the above study, Zhang et al. 
conclude that within each Fresnel zone, the worst 
human location for centimeter-level motion sens-
ing is around the boundary, while the best loca-
tion appears in the middle of the Fresnel zone, 
as illustrated in Fig. 2. By further considering the 
multi-frequency diversity of subcarriers, a respira-
tion detection map can be constructed to instruct 
where respiration is detectable by different sub-
carriers, as illustrated in Fig. 3. According to this 
map, Zhang et al. found that in the inner Fresnel 
zones, there are many places where human chest 
movement cannot be detected by any subcarrier, 
while a short human body move outwards would 
make the human respiration detectable; in the 
frequency diversity-enabled region, at least one 
subcarrier can be used to detect the human respi-
ration according to the ideal Fresnel zone model. 
Besides the impact of location, they also show 
that the orientation of the human body also mat-
ters. Different orientations lead to different effec-
tive chest displacements with respect to a pair of 
transceivers, thus influencing the detectability of 
human respiration [14].

To validate our observation, we conduct-
ed extensive experiments in an apartment. The 
experiment settings are illustrated in Fig. 3b. A 
subject laid on the bed facing up. In order to 
validate that the detectable and undetectable 
regions alternatively appeared in the shape of 
ellipses in the geometrical space, we mounted 
a COTS WiFi transmitter and receiver pair on 
two vertically placed slide rails. We examined 

six consecutive Fresnel zones and collected 2 
hours’ CSI data at a sampling rate of 20 pack-
ets/s. The results show that the detectable and 
undetectable regions indeed appear alternatively 
by fixing the human posture and moving the LoS 
away from the human continuously, and the esti-
mation performance in the detectable regions is 
consistent. In our case, the median estimation 
errors of respiration rate in the three detect-
able regions are about 0.09 breaths per minute 
(bpm), 0.15 bpm, and 0.06 bpm, respectively, 
compared to the overall mean estimation error 
of 0.4 bpm reported in [12]. Please note that our 
experiment results show that human respiration 
cannot be monitored reliably in the three unde-
tectable regions, which were not reported in the 
previous work.

By comparing the above two human respira-
tion sensing approaches, it can be seen that the 
pattern-based respiration detection method used 
in [12] is intuitive and works well as long as the 
assumption holds, that is, at least one subcarrier is 
able to sense the human chest movement. How-
ever, our proposed Fresnel-zone-model-based 
approach could explain when the pattern-based 
system works or not, why some locations and 
subcarriers are not able to detect human respira-
tion effectively, and how WiFi devices should be 
positioned for better respiration monitoring [14]. 
With these findings and understandings, designing 
a practical respiration monitoring system should 
consider many factors such as the location of the 
subject, the posture of the subject, and the posi-
tioning of WiFi devices for effective continuous 
monitoring. These considerations also apply to sit-
uations where more than one person’s respiration 
rates are monitored.

From the above case study we can see that 
not only can the Fresnel zone model interpret 
where and at what orientation a person’s respira-
tion can be sensed, but it can also guide the sens-
ing system design. However, the pattern-based 
respiration sensing approach can only sense res-
piration when there are obvious and clear signal 
patterns. It can neither answer the question why 
sometimes human respiration cannot be sensed, 
nor provide guidance on how to design a robust 
monitoring system.

Figure 2. a) Human respiration detection at two locations in Fresnel zones; b) their corresponding CSI waveforms.
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Conclusion

Today’s device-free WiFi CSI-based human behav-
ior recognition works are either pattern-based or 
model-based, or a combination of both. While 
the pattern-based approaches are straightforward 
and effective for many sensing applications, they 
are observation- and empirical-study-based, and 
usually require a deep case-by-case investigation 
and intensive training for a specific application. 
Although they have been very popular and suc-
cessful in this field, pattern-based approaches are 
trial and error by nature, having the bottleneck 
of predicting the sensing limit and understanding 
what complexity of human behaviors is recogniz-
able, especially for continuous and fine-grained 
human sensing tasks. 

Model-based approaches aim to fundamen-
tally understand the governing law on how a 
human’s motion/location/orientation impacts the 
received signals in the environments, and math-
ematically depict the direct relationship between 
the received signals and the sensing target. For 
this reason, model-based approaches not only 
have the potential to solve more complex and 
fine-grained human behavior recognition prob-
lems, but also could guide us in understanding 
the sensing limits (e.g., sensing area, fineness 
of behavior, accuracy bound) and the rationale 
behind it in the real world as well. Among all the 
efforts, the Fresnel zone model seems to be the 
most general one. It not only shows its effective-
ness in supporting both coarse-grained and fine-
grained human behavior recognition applications, 
but also helps us to understand how radio waves 
propagate in real-world environments and what 
is the possible sensing limit with WiFi CSI mea-
surements. With those attributes, we believe that 
the Fresnel zone model has the potential to rev-
olutionize the RF-based human sensing field and 
enable more real-world applications, which were 
not possible without the model. 

However, there is still a lot of research that 
needs to be done in order to fully understand the 
properties of the Fresnel zone model in the mul-
tipath-rich indoor environments, especially with 
multiple moving objects. It also should be noted 
that there is no single model which can solve all 
the problems. With those points in mind, while 
we strongly encourage researchers in the WiFi 
human sensing field to join us in developing new 

models and improving the existing models due to 
their obvious advantages, we envision that com-
bining the model-based approaches with the pat-
tern-based approaches would still be the most 
effective way for WiFi CSI-based human behavior 
recognition in the coming years.
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