
A Multipath QUIC Scheduler for Mobile HTTP/2

Jing Wang, Yunfeng Gao, Chenren Xu�∗

Peking University

ABSTRACT

In recent years, QUIC protocol has shown great advantages

for HTTPS over TCP in terms of improving handshake delay

and head-of-line blocking. Multipath QUIC (MPQUIC) fur-

ther opens up the opportunity to leverage path diversity for

realizing various optimization goals, especially for mobile

access. In this paper, we present a context-aware MPQUIC

packet scheduler dedicated to mobile HTTP/2. Specifically,

the scheduler takes into account the stream priority (from

HTTP/2 dependency tree) for stream-aware downlink packet

scheduling by exclusively transferring each stream at a time

while maintaining the relative stream completing order. Ad-

ditionally, ACK packets are scheduled by choosing the path

with the lowest one-way delay to reduce overall RTT and ex-

pedite loss recovery. Real-world experiments show that our

scheduler reduces page load time by up to 8.5% and stream

average completion time by up to 12.9% over the status-quo.

CCS CONCEPTS

• Networks → Transport protocols; Application layer

protocols; Packet scheduling.

KEYWORDS

QUIC, MPQUIC, multipath, mobile, HTTP/2, scheduler

ACM Reference Format:

Jing Wang, Yunfeng Gao, Chenren Xu. 2019. A Multipath QUIC

Scheduler for Mobile HTTP/2. In 3rd Asia-Pacific Workshop on Net-

working 2019 (APNet ’19), August 17–18, 2019, Beijing, China. ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3343180.3343

185

∗
�: chenren@pku.edu.cn

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

APNet ’19, August 17–18, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7635-8/19/08. . . $15.00

https://doi.org/10.1145/3343180.3343185

1 INTRODUCTION

Mobile devices are generating more HTTP traffic than desk-

tops today [1]. Meanwhile, HTTP/2 has been proposed to

reduce Page Load Time (PLT) by using multiplexing, concur-

rency, stream dependencies, header compressions and server

push. Up to now, 148,612 sites truly support HTTP/2 [2].

However, its improvement is blurred due to its complexity

of loading a page caused by interleaving network transfer

and local computation (e.g., parsing HTML/JavaScript/CS),

especially in mobile cases [3]. Optimizing HTTP alike traffic

is highly necessary, as Google reported in [4] that additional

delays in PLT significantly reduced the number of searches,

and an extra delay of 500 milliseconds can decrease up to

20% traffic for some popular content provider [5].

QUIC protocol is proposed to improve transport perfor-

mance for HTTP/2 traffic and to enable rapid deployment

by elevating all the flow/congestion control logic to the user

space. Today, QUIC accounts for up to 9.1% of the current

Internet traffic [6]. By leveraging the native multiple inter-

faces (e.g., WiFi and cellular) on mobile devices, the design

of multipath QUIC [7, 8] can easily facilitate bandwidth ag-

gregation from multiple independent paths. However, the

PLT of HTTP/2 web involves complicated inter-object down-

loading dependencies and additional computation delay (e.g.,

from JS), which is not considered in the native (MP)QUIC

design, but can consequently lead to head-of-line blocking.

As another aspect, in (MP)TCP operation, ACK and the cor-

responding data packet are often binded in the same path,

which incurs out-of-order delay and postpones loss recovery

when a link (e.g., WiFi) experiences high variations of RTT.

In this paper, we present a downlink-uplink co-designed

context-aware MPQUIC packet scheduler that exploits sev-

eral unique characteristics of QUIC and HTTP/2 to address

the issues aforementioned. For downlink scheduling, the

server effectively leverages the priority information from

the dependency tree provided byHTTP/2 to reduce the block-

ing period in the default weighted round-robin scheduling.

Specifically, We first determine the stream deliver sequence

considering both stream priority and size to guarantee the

fairness by calculating the completion sequence of all streams

in the weighted round robin algorithm. Then we optimize

completion time for each specific stream by allocating path

quotas to it. This not only makes all streams complete as the

original sequence, but also transfers each stream exclusively

and makes it complete on different paths simultaneously,

1

43

which minimizes its completion time. For uplink scheduling,

we send all ACK packets through the path with the lowest

uplink latency based on dynamic probing. By breaking the

tie between data and ack on the same path, our solution can

reduce RTT and speed up loss recovery.

Contributions.

•We design a downlink-uplink co-designed scheduler for

mobile HTTP/2. It leverages the unique protocol characteris-

tics such as the dependency tree and flexible path assignment

to collaboratively reduce the page load time.

•We implement a prototype of our co-designed scheduler

and validate it by running simulated and real-world exper-

iments. Our real-world experimental results (§4) show we

can reduce page load time by up to 8.5% and reduce stream

average completion time by up to 12.9%.

2 BACKGROUND

HTTP/1.x has several performance issues with establishing

multiple TCP connections. The issues include unnecessary

handshakes, superfluous header retransmissions, and slow

start. HTTP/2 aims to address those issues by only using

one TCP connection per origin with separate frames. The

Header Frames contain the HTTP header and other control

messages. The Data Frames contain request/response bod-

ies. HTTP/2 uses HPACK to compress header metadata and

delivers all the Frames in parallel. HTTP/2 also introduces

a dependency-based prioritization mechanism to schedule

streams. The client can specify weights for specific streams

and dependencies between streams. Thus, the server will

send a stream only after the completion of its dependent

streams. The weights also give the server hints about the re-

source (i.e., bandwidth) allocation proportion among streams.

HTTP/2 also enables other features like server push to speed

up the page load procedure.

Google’s Quick UDP Internet Connection (QUIC) is an

application-layer transport protocol. It provides reliable, high-

performance, and encrypted in-order packet delivery. It out-

performs TCP from two aspects. Firstly, QUIC implements a

loss detection and recovery mechanism, more flexible and

efficient than TCP. One QUIC frame can acknowledge up to

256 packet ranges while SACK in TCP option can only deal

with 2-3 blocks. Secondly, it eliminates head-of-line blocking.

When a loss or out-of-order occurs on one stream, it blocks

all other streams in HTTP/2 + TCP, because TCP has to

maintain connection level in-order delivery. Whereas, QUIC

allows other streams to continue transmitting without being

blocked. Although QUIC is a transport protocol, it has many

features designed to work with HTTP/2. QUIC implements

stream multiplexing and its data streams carry the HTTP/2

data frames. Besides, QUIC uses a header stream in the entire

connection to handle HTTP/2 header frames. When a header

Figure 1: Dependency Tree Example.

frame arrives at the server, either the server or the client

opens new data streams to transmit data frames.

MPQUIC [7] further adds multipath capability to QUIC.

It adds several control frames and a path scheduler for path

management. The path scheduler arranges packets on paths

and is set to MIN-RTT by default. MPQUIC exhibits potential

to outperform MPTCP with QUIC’s inherent features. If a

packet loss occurs, MPTCP can retransmit the packet on

another path, but the original subflow will still retransmit

the packet due to connection level in-order delivery, delaying

the following packets and wasting network resources. In

contrast, MPQUIC is able to reschedule lost packets on a

different path flexibly, accelerating loss recovery.

3 DESIGN

We design a scheduler for both downlink and uplink. The

downlink scheduler arranges downlink streams on different

paths. It considers path characteristics (i.e., bandwidth, RTT)

and stream priorities from HTTP/2 dependency tree. The

uplink scheduler arranges ACK Frames by choosing the path

with the lowest uplink delay. Thus, it can reduce overall RTT

and speed up loss recovery.

3.1 Stream-Aware Downlink Scheduler

To load a web page, the browser needs to download a series

of objects, including Javascript, CSS, images, and etc. The

objects priority has a large impact on page loading. QUIC

doesn’t provide any priority schemes, but should make use of

the priorities offered by overhead layers [10]. (MP)QUIC has

access to the priority and length of each stream. Having this

knowledge therefore allows us to determine stream delivery

sequences and reduce completion time.

3.1.1 Stream Prioritization

HTTP/2 defines the dependency tree, a prioritization mech-

anism, to describe object priorities. In a dependency tree,

nodes represent streams and links represent the dependen-

cies. A children stream should wait until its parents finish

the delivery. Each node has a weight number from 1 to 256,

identifying their relative priorities. An inactive parent stream

allocates its resources to its children stream.

The de facto MPQUIC scheduler neither supports the de-

pendency tree nor takes action on the priority. Weighted

2

44

Figure 2: Stream Schedule Policy.

Round Robin (WRR) algorithm gives each stream a fair share.

Each parent node in the dependency tree applies a scheduler

based on the WRR algorithm. If the node has data to send

and can send data, it consumes its resources. Otherwise, it

distributes the resources to its children according to their

priorities. In this way, several streams are simultaneously

transferred on the same path. This algorithm considers the

stream priority and the fairness not to starve any streams.

However, the concurrent transfer can enlarge the average

stream completion time.

During a web browsing procedure, a stream has minor us-

age before the stream’s completion. It can benefit more if we

keep fairness and use exclusive transmission. For example, in

Fig. 1, stream 0 has 3 children streams which are HTML, font

and image, with the weight of 32, 42, and 22, respectively,

according to the Firefox priority scheme. Up to now, differ-

ent browsers use different policies to build their dependency

trees. It depends on the server to decide how to use the prior-

ity hints. In our work, we choose the priority scheme from a

widely used browser Firefox. In this scheme, different object

types are grouped into different priority classes. Assuming

the bandwidth is 1 MBps, streams 2, 1, 3 would complete

transmitting at 2.3, 4.4 and 5s respectively with WRR algo-

rithm. However, if we transmit the streams 2, 1, 3 exclusively,

they can complete at 1, 3, and 5s respectively, significantly

reducing the average stream completion time. Note that if a

client wants stream 1 to finish first, it can change the stream

weight to a higher number (e.g., 100).

Based on this intuition, our scheduler first calculates the

stream completion sequence in WRR based algorithm using

the information of stream length and dependency tree, and

then exclusively deliver each stream.

3.1.2 Stream Bytes Allocation

We have already determined the transfer order of all the

streams. Our goal is to make each path complete data transfer

at the same time for a stream. We allocate an appropriate

proportion of bytes on each path for each stream. When

estimating stream completion time for each path, we consider

bandwidth, RTT, and queuing time of previous streams.

Suppose we allocate Si j bytes on path j to transfer stream i
(here streams are renumbered to match their transfer order).

The completion time of the stream on this path is

Ti j = RTTj + Si j/BWj

Meanwhile, the total queuing time of the previous streams

on this path is:

Qi j =
∑
k<i

Tk j

We can formalize our goal as{
Ti1 +Qi1 = Ti2 +Qi2 = · · · = TiN +QiN∑

Si j = SIZEi
(1)

where N is the number of paths, SIZEi is the remaining size

of stream i , RTTj and BWj are RTT and bandwidth of path j.
The solution to (1) is:

Si j = BWj · (
SIZEi −

∑
k BWk (RTTj +Qik)∑

k BWk

− RTTj −Qi j)

Qi j can be calculated when previous streams are allocated.

We use the smoothed RTT and the congestion window size

provided by QUIC to estimate path RTT and bandwidth. Note

that the theoretical solution may be non-integer or negative.

Currently, we round down the numbers and convert negative

numbers to zero, then pick a non-zero number randomly and

adjust it to keep the sum of allocated bytes correct.

3.1.3 Put Them Together

We now describe how we integrate the algorithms in §3.1.1

and §3.1.2 into one scheduler. In the beginning, scheduling is

triggered when the server has new data to send or receives

an ACK. We first traverse through the paths in ascending

order of RTT and try to send as many packets as possible on

each path. When sending a packet, we traverse through the

streams in the order determined by §3.1.1. For each stream,

we apply a sending limit according to the allocation mech-

anism described in §3.1.2. When no bytes can be sent, we

switch to the next stream; When the congestion window is

full or no streams are available on this path, we turn to the

next path. We show our algorithm in Alg. 1. When sending is

finished, we update the remaining size of each stream, rear-

range stream order, and reallocate bytes. New data arriving

or path changing also triggers the rearrangement.

3.2 Latency-aware Uplink Scheduler

MPTCP can improve connection reliability but may not per-

form bandwidth aggregation well when paths are extremely

heterogeneous. The throughput of MPTCP can be worse than

single path TCP with disperse path capacity. MPQUIC miti-

gates the problem by eliminating head-of-line blocking and

flexibly retransmitting lost packets on faster paths. MPQUIC

adds a Path ID field into the ACK frame and thus enables ac-

knowledging QUIC packets on any path in the same session.

3

45

Algorithm 1 Stream Earliest Completion Scheduler

Sort available paths with RTT

p ← firstPath

while p is not null do

s ← firstStream

while (s is not null) and (cwnd not full) do

quota ← bytes allocated on p for s
swnd ← sending window of s
size ← remaining bytes of s
size ←min(quota, swnd, size)
if size > 0 then

Send packet

else

s ← nextStream

end if

end while

p ← nextPath

end while

Update stream remaining size

Rearrange stream order and allocation

But by far, an ACK frame is still sent on its own path. In our

work, we estimate uplink delay for all paths and send ACK

frames on the path with the lowest uplink delay. It reduces

the RTT for slower paths without disturbing the congestion

control algorithm. Our scheduler takes two steps:

• Estimate uplink delay. Duplicated ACK packets are sent

simultaneously on all uplink paths periodically or when

a new path is created. The server monitors duplicated

ACKs and gets the uplink delay for all paths. Note that it’s

not reasonable to duplicate all packets containing ACK

frames blindly on all paths, because doing so will gener-

ate considerable unnecessary traffic when path numbers

grow. Another option is to modify the ACK frame format

and to add a timestamp into it. But in this way, it will

not be compatible with the legacy protocol. Clients using

our scheme can work well with legacy servers.

• Change ACK Return Path. MPQUIC server receives and

monitors duplicate ACKs, from which it keeps the uplink

delay information for all paths up-to-date; Then it tells

the client which path ACK frames should be sent on.

We add a CHANGE_RETURN_PATH_FRAME control

frame to designate an ACK path for each downlink path

explicitly. Note that the ACK path ID here is transparent

to the congestion window and each round trip path is

identified by the downlink path ID.

Reducing RTT brings benefits of better loss recovery because

the protocol needs less time to detect a packet loss event. It

is also more friendly to latency sensitive applications.

4 EVALUATION

We evaluate our system with both controlled experiments in

simulated environments and a real-world situation where a

mobile device uses WLAN and LTE interfaces together. Note

that our experiments are only for prototype validation. We

will do a thorough evaluation in the future. We implement

our scheduler based on the prototype of mp-quic [11], with

1187 lines of golang code. mp-quic is implemented based on

the golang version of QUIC quic-go [12]. Neither mpquic

nor quic-go supports HTTP/2 dependency tree or any other

prioritization mechanism. They simply use a round-robin

scheduler for streams.We add necessary interfaces for stream

prioritization and useWeighted Round Robin as our baseline.

4.1 Experimental Setup

For the controlled experiments, we use Mininet simulation

platform [13] running on GIGABYTE MKLP7AP-00 with i7-

6500U.We use two paths on behalf of LTE andWIFI paths, but

our scheduler is scalable to multiple paths. We empirically

choose two scenarios 1) two paths with the same bandwidth

5Mbps and One Way Delay (OWD) 10ms and 2) two paths

with different bandwidth 3Mbps , 7Mbps and different OWD

10ms , 50ms respectively. The aggregated bandwidth remains

at 10Mbps . We also do the experiment in these two scenarios

under a non-negligible path loss of 2%. Fig. 7 shows our real-

world experiment’s testbed.

Server. We deploy MPQUIC on the Alibaba Cloud with 4

vCPU, 16GB RAM, 100Mbps peak bandwidth.

Client.We tether one Android phone (Xiaomi 6) to a laptop

(Dell Latitude E7470) via USB 3.0. The laptop is connected

to WiFi AP in CERNET [14]. The phone is equipped with a

SIM card of one popular mobile carrier in China.

4.2 Experimental Results

We evaluate our stand-alone uplink/downlink scheduler and

the co-designed scheduler. Then we compare them with the

default MIN-RTT scheduler. Schedulers without our down-

link optimization are combined with the Weighted Round

Robin stream scheduler. We summarize the path parameters

HETEROGENEITY PATH 1 PATH 2 NOTE

Low 5 Mbps Bandwidth, 10 ms OWD, 0 PLR 5 Mbps Bandwidth, 10 ms OWD, 0 PLR All parameters are same

Low and Lossy 5 Mbps Bandwidth, 10 ms OWD, 2% PLR 5 Mbps Bandwidth, 10 ms OWD, 2% PLR Packet Loss Rate is non-negligible

High 3 Mbps Bandwidth, 10ms OWD, 0 PLR 7 Mbps Bandwidth, 50 ms OWD, 0 PLR Bandwidth and OWD varies

High and Lossy 3 Mbps Bandwidth, 10ms OWD, 2% PLR 7 Mbps Bandwidth, 50 ms OWD, 2% PLR Packet Loss Rate is non-negligible

Table 1: Parameter setting for experiments.
4

46

 0

 0.3

 0.6

 0.9

 1.2

 1.5

Low High Low-Lossy High-Lossy

P
ag

e
Lo

ad
 T

im
e

(s
)

Path Heterogeneity Level

Uplink Only
Downlink Only

Co-Design
Min-RTT

(a) Google

 0

 2

 4

 6

 8

 10

Low High Low-Lossy High-Lossy

P
ag

e
Lo

ad
 T

im
e

(s
)

Path Heterogeneity Level

Uplink Only
Downlink Only

Co-Design
Min-RTT

(b) Amazon

Figure 3: Simulation Experiments.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

Google Amazon

P
ag

e
Lo

ad
 T

im
e

(s
)

Uplink Only
Downlink Only

Co-Design
Min-RTT

Figure 4: Real-World Experiments.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4

C
D

F
 (

%
)

Stream Completion Time (s)

Uplink Only
Downlink Only

Co-Design
MIN-RTT

(a) Low Heterogeneity Paths.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4

C
D

F
 (

%
)

Stream Completion Time (s)

Uplink Only
Downlink Only

Co-Design
MIN-RTT

(b) High Heterogeneity Paths.

Figure 5: Simulation Experiments.

 0

 20

 40

 60

 80

 100

 0 0.4 0.8 1.2 1.6

C
D

F
 (

%
)

Stream Completion Time (s)

Uplink Only
Downlink Only

Co-Design
Min-RTT

Figure 6: Real-World Experiments.

Figure 7: Evaluation testbed.

of interest, including bandwidth, one-way delay, and packet

loss rate (PLR) in Tab. 1.

We first capture copies of web pages supporting HTTP/2

from two famous real-world websites in Tab. 2 (a). We use

webpagetest [15] to download all the objects and their de-

pendency tree, and then deploy a simple QUIC server in

golang to host the pages. Then we write a client in golang to

fetch HTTP/2 websites. We evaluate the impacts of different

schedulers by analyzing the completion time of all the web

objects (i.e., Page Load Time) and the completion time of

each stream under different network scenarios. Note that

the completion time of a stream depicts the duration from

the page request to the stream completion. Reducing stream

completion time can potentially speed up the page loading

procedure in a browser. For example, a browser can parse

completed CSS and JavaScript files earlier. Sequential com-

puting is time-consuming on a mobile device and sometimes

can block the delivery of the following objects. Thus, reduc-

ing the stream completion time can speed up the loading of

the whole page and benefit user’s QoE.

Page Load Time. Fig. 3 shows the results of Page Load

Time (PLT) for Google and Amazon under different scenar-

ios simulated by Mininet. For the Google web page, uplink

scheduler benefits significantly in the loss scenarios where

two paths are heterogeneous. It can reduce up to 7.8% PLT

for Google. It is because decreased RTT leads to lower RTO;

thus, a packet loss can be detected in a shorter time com-

pared to default MPQUIC. Note that retransmission of a lost

packet has already performed on the fastest path in MPQUIC,

we keep this feature in our method to recover loss fast. Our

downlink scheduler reduces the PLT by 11-78 ms because

our scheduler lets the stream wait for the faster path if it can

complete earlier by waiting instead of being transmitted on

the slower path, similar to ECF. The Co-designed scheduler

combines the uplink and downlink scheduler, and it reduces

up to 18.2% of PLT. Amazon has a large number of objects,

and in this case, scheduler spends almost the same PLT with

WRR + MIN-RTT. But we believe it can benefit more in real

browsers since the stream sequence will have a big impact

on PLT because of the blocked local computation. We repeat

the experiments in the real world. Results in Fig. 4 shows

that our co-designed scheduler reduces page load time by

3.9% for Google and 8.5% for Amazon. The reduction of PLT

mainly attributes to the ACK offloading from WIFI to LTE.

Stream Completion Time.We analyze the stream comple-

tion time and draw the CDF of all the objects from Google

and Amazon for two different scenarios, where two paths

are under different heterogeneities. As shown in Fig. 5, our

scheduler significantly outperforms the MIN-RTT scheduler.

Because we exclusively transfer each stream so it can com-

plete faster. Note that we remain fair because the stream

completion sequence in our scheduler is the same as the

5

47

WRR algorithm. We achieve this by pre-calculating the se-

quence and transferring streams exactly as we calculated.

When paths are heterogeneous, our scheduler is likely to

estimate bandwidth inaccurately and has lower benefits than

in low heterogeneity scenario. We repeat the experiments in

the real world. Results in Fig. 6 show that the co-designed

scheduler can reduce stream average completion time by up

to 12.9% for all objects. ACK offloading reduces RTT onWIFI

path, resulting in estimating bandwidth more accurately,

thus it further reduces the stream completion time.

5 DISCUSSION

Dependency Tree. The structure of the dependency tree

can have significant impacts on the web page processing

procedure since it can affect the stream completion sequence.

The question of which policy is more beneficial remains

to be explored/answered. Some works [16] [17] focus on

the order of web objects to optimize QoE but they are not

designed for HTTP/2. Up to now, browsers use different

policies to build dependency trees, and servers decide how

to use the priority hints. However, Jiang et al. [18] showed

that fewer HTTP/2 servers than expected had implemented

priority mechanisms. Our scheduler implements a priority

mechanism by calculating stream delivery sequences using

the dependency tree, and can work better when the client

has a better policy on stream priority.

Non HTTP alike Traffic. Our scheduler is optimized for

web applications and takes advantage of stream length and

priority information from the client. When no such informa-

tion is available for non-HTTP alike traffic, our scheduler

compatibly falls back to default round robin algorithm.

Mobility.Whenmobility exists, the bandwidth and RTTwill

dynamically change with time. Estimating path bandwidth

and RTT inaccurately would be harmful to page loading. The

scheduler needs to adjust the quota on each path dynamically

to solve the problem, and we leave this as future work.

6 RELATEDWORK

A number of multipath packet schedulers have been pro-

posed to reduce out-of-order packets and improve the overall

Website # Objs Total Size (MB)

Google 14 0.39

Amazon 256 3.76

(a) Website

Path WIFI LTE

Bandwidth (Mbps) 57.4 ± 7.0 65.9 ± 6.9

RTT (ms) 214 ± 54 77.8 ± 30

(b) Path

Table 2: Website and path parameter.

performance. STMS [19] schedules packets strategically to

make them arrive at the client in order. Earliest Completion

First (ECF) scheduler [20] utilizes information including esti-

mated RTT, bandwidth and available data to decide whether

to wait for a faster path. It solves the problem of faster paths

being potentially blocked by slower ones due to path hetero-

geneity. For a single stream, our optimization goal is similar

to ECF, but we take stream length into consideration and

apply a byte limit on paths instead of blindly waiting. Our

scheduler is also aware of multiple streams along with their

priorities. We also propose uplink scheduling.

MPQUIC’s [7] proposing, being aware of streams and flex-

ible enough to schedule frame and packets, further provides

the opportunity to optimize the scheduler. To our knowledge,

few studies in recent years have done work on optimizing

schedulers. MPQUIC uses the min-RTT algorithm to choose

a path for each packet. Rabitsch et al. [21] proposed a stream-

aware scheduler for heterogeneous paths. It allocates a fair

share of the aggregated bandwidth to each stream according

to HTTP/2’s dependency tree and determines which path the

stream should be sent on. But its sending path for a stream

will not be changed once assigned, and several streams are

delivered on the same path simultaneously, delaying the lo-

cal computation and causing relatively long page load time.

Our work differs from theirs because we exclusively transfer

each stream in the order we expected. We also make each

stream complete sending at the same time on different paths

to minimize stream completion time.

7 CONCLUSION

It becomes more and more popular to browse websites on

mobile devices. User-space implementation makes deploy-

ing MPQUIC, a protocol designed to improve web browsing

experience, on mobile phones extensively possible. Optimiz-

ing the scheduler over MPQUIC can significantly improve

HTTP/2 performance. Our co-designed scheduler estimates

the path bandwidth and RTT, and it also considers stream

priority. The scheduler allocates an appropriate number of

bytes to be transferred on each path for each stream, making

all the paths complete transmission for a stream at the same

time. Each stream will be transmitted exclusively in a pre-

defined order. We keep it fair by pre-determining the stream

sequence according to both stream priority and length, and

transferring streams to make their completion sequence ex-

actly the same as we expected. Experimental results show

that both our uplink and downlink schedulers can signifi-

cantly reduce stream completion time and page load time.

ACKNOWLEDGMENTS

This work is supported in part by National Natural Science

Foundation of China (Grant No. 61802007).

6

48

REFERENCES
[1] Mobile web browsing overtakes desktop for the first time.

https://www.theguardian.com/technology/2016/nov/02/mobil

e-web-browsing-desktop-smartphones-tablets, Nov 2016.

[2] Http/2 dashboard. http://isthewebhttp2yet.com/.

[3] Yi Liu, Yun Ma, Xuanzhe Liu, and Gang Huang. Can http/2 really help

web performance on smartphones? In IEEE SCC, 2016.

[4] Eric Schurman and Jake Brutlag. Performance related changes and

their user impact. In velocity web performance and operations conference,

2009.

[5] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie.

How far can client-only solutions go for mobile browser speed? In

ACM WWW, 2012.

[6] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. A

first look at quic in the wild. In Springer PAM, 2018.

[7] Quentin De Coninck and Olivier Bonaventure. Multipath quic: Design

and evaluation. In ACM CoNEXT, 2017.

[8] Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Koldehofe,

and Ralf Steinmetz. Multipath quic: A deployable multipath transport

protocol. In IEEE ICC, 2018.

[9] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext transfer

protocol version 2 (http/2). Technical report, 2015.

[10] draft-ietf-quic-transport-14. https://datatracker.ietf .org/doc/html/draf

t-ietf-quic-transport-14.

[11] Quentin De Coninck et al. Multipath quic. https://github.com/qdeco

ninck/mp-quic, 2018.

[12] Lucas Clemente et al. A quic implementation in pure go. https:

//github.com/lucas-clemente/quic-go, 2018.

[13] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,

and Nick McKeown. Reproducible network experiments using

container-based emulation. In ACM CoNEXT, 2012.

[14] Xing Li, Congxiao Bao, Maoke Chen, Hong Zhang, and Jianping Wu.

The china education and research network (cernet) ivi translation

design and deployment for the ipv4/ipv6 coexistence and transition.

Technical report, 2011.

[15] Patrick Meenan. Webpagetest. https://www.webpagetest.org/.

[16] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall.

Speeding up web page loads with shandian. In USENIX NSDI, 2016.

[17] Weiwang Li, Zhiwei Zhao, Geyong Min, Hancong Duan, Qiang Ni,

and Zifei Zhao. Reordering webpage objects for optimizing quality-of-

experience. IEEE Access, 2017.

[18] Muhui Jiang, Xiapu Luo, TungNgai Miu, Shengtuo Hu, and Weixiong

Rao. Are http/2 servers ready yet? In IEEE ICDCS, 2017.

[19] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong Dai, Fanzhao

Wang, and Kai Zheng. {STMS}: Improving {MPTCP} throughput

under heterogeneous networks. In USENIX ATC, 2018.

[20] Yeon-sup Lim, Erich M. Nahum, Don Towsley, and Richard J. Gibbens.

Ecf: An mptcp path scheduler to manage heterogeneous paths. In

ACM CoNEXT, 2017.

[21] Alexander Rabitsch, Per Hurtig, and Anna Brunstrom. A stream-aware

multipath quic scheduler for heterogeneous paths. In ACM EPIQ, 2018.

7

49

