
Occlumency: Privacy-preserving Remote
Deep-learning Inference Using SGX

Taegyeong Lee1∗, Zhiqi Lin2∗, Saumay Pushp1, Caihua Li3∗, Yunxin Liu4,
Youngki Lee5, Fengyuan Xu6∗, Chenren Xu7∗, Lintao Zhang4, Junehwa Song1

1KAIST, 2University of Science and Technology of China, 3Rice University, 4Microsoft Research,
5Seoul National University, 6National Key Lab for Novel Software Technology – Nanjing University, 7Peking University

1{tglee, saumay, junesong}@nclab.kaist.ac.kr, 2ralzq01@mail.ustc.edu.cn, 3caihua.li@rice.edu, 4{yunxin.liu,
lintaoz}@microsoft.com, 5youngkilee@snu.ac.kr, 6fengyuan.xu@nju.edu.cn, 7chenren@pku.edu.cn

ABSTRACT

Deep-learning (DL) is receiving huge attention as enabling
techniques for emerging mobile and IoT applications. It is a
common practice to conduct DNN model-based inference us-
ing cloud services due to their high computation andmemory
cost. However, such a cloud-offloaded inference raises seri-
ous privacy concerns. Malicious external attackers or untrust-
worthy internal administrators of clouds may leak highly
sensitive and private data such as image, voice and textual
data. In this paper, we propose Occlumency, a novel cloud-
driven solution designed to protect user privacy without
compromising the benefit of using powerful cloud resources.
Occlumency leverages secure SGX enclave to preserve the
confidentiality and the integrity of user data throughout the
entire DL inference process. DL inference in SGX enclave,
however, impose a severe performance degradation due to
limited physical memory space and inefficient page swap-
ping. We designed a suite of novel techniques to accelerate
DL inference inside the enclave with a limited memory size
and implemented Occlumency based on Caffe. Our exper-
iment with various DNN models shows that Occlumency
improves inference speed by 3.6x compared to the baseline
DL inference in SGX and achieves a secure DL inference

∗This workwas done in part when the authors were withMicrosoft Research
as an intern or a visiting researcher.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3345447

within 72% of latency overhead compared to inference in the
native environment.

CCS CONCEPTS

• Security andprivacy→ Information flow control; •Human-

centered computing→ Ubiquitous and mobile computing
systems and tools.

KEYWORDS

Mobile deep learning; privacy; trusted execution environ-
ment; cloud offloading
ACM Reference Format:

Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu,
Youngki Lee, Fengyuan Xu, Chenren Xu, Lintao Zhang, Junehwa
Song. 2019.Occlumency: Privacy-preserving RemoteDeep-learning
Inference Using SGX. In The 25th Annual International Conference
on Mobile Computing and Networking (MobiCom ’19), October 21–
25, 2019, Los Cabos, Mexico. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3300061.3345447

1 INTRODUCTION

Deep-learning (DL) techniques are now widely used as core
enablers ofmany life-immersivemobile and Internet of Things
(IoT) applications [79]. Advances in Deep Neural Networks
(DNNs) has made breakthroughs in many tasks such as ob-
ject recognition [36], speech recognition [78] and natural
language processing [20]. As the execution of accurate DNN
models is computation and memory intensive, it is a com-
mon practice to conduct DNN-based inference using cloud
services [18].
Such cloud offloading offers application (App) develop-

ers the opportunity of serving high demands of accuracy-
sensitive inference but raises serious privacy concerns which
incline users to avoid those services. To use a cloud-based
service, a mobile or IoT App sends user’s data, such as im-
ages, voices, and textual contents, to a multi-tenant cloud for
inference. Many of these input data are considered as private
and sensitive information, while the cloud platform is hardly

https://doi.org/10.1145/3300061.3345447
https://doi.org/10.1145/3300061.3345447

trusted and suffers data breaches due to malicious external
attacks and untrusted internal administrators[15, 60]. Thus,
protecting the user data leakage is critical to App developers
in attracting more users while leveraging the cloud-based
inference.
It is a critical challenge to enable cloud-based inference

while satisfying the balance between users’ privacy, infer-
ence accuracy, and latency. One approach is to conduct DNN
inference over encrypted data using the cryptography meth-
ods like fully or semi homomorphic encryption [28, 37]. It
achieves a high level of user privacy, but the current perfor-
mance of such methods is not acceptable in serving mobile
users in practice for the deep learning inference. Another
approach is on-device DL inference [43, 51, 80], which aims to
run DL inference locally on off-the-shelf mobile/IoT devices
by compressing models or designing new lightweight mod-
els. It mitigates the chances of leaking private data; however,
compressed and lightweight models hardly achieve the same
model accuracy as the large models, due to the trade-off
between model size and model accuracy (§2.1). Moreover,
on-device inference incurs high energy cost and significantly
impacts the lifetime of battery-operated smart devices.
In this paper, we propose Occlumency, a novel cloud-

driven solution that strikes a balance between privacy, in-
ference accuracy, and latency without imposing any burden
to mobile/IoT devices. Our key idea is to leverage Trusted
Execution Environments (e.g., Intel Software Guard eXten-
sion (SGX) [9] in our prototype) to perform DL inference in
the hardware-protected enclave. A device sends user data di-
rectly into an SGX enclave on a cloud server through a secure
channel. Occlumency then executes the entire DNN pro-
cessing pipeline in the enclave and transmits the result back
to the device. Consequently, Occlumency protects users’
private input data, inference results, and all intermediate
outputs throughout the end-to-end offloading process while
taking advantages of powerful cloud resources. With Occlu-
mency, devices consume much less resource and energy than
the on-device DL inference, minimizing the degradation of
user experiences or quick battery drain.
DL inference in SGX enclave, however, impose severe

performance challenges, which led prior works to forgo sup-
porting DNN models [41, 56] or a full protection of data
privacy [31]. Our experiments show that DL inference inside
an SGX enclave is 6.4x slower than the native speed running
outside of enclave. We find out two main problems causing
such performance degradation. Firstly, memory read and
write inside the enclave is slower than the standard execu-
tion outside the enclave, which is critical for DL inference
requiring a large volume of memory operations. The SGX en-
clave maintains a protected memory area (Processor Reserved
Memory (PRM)) where all the data is encrypted through a
dedicated chipset, which adds extra steps to encrypt and

decrypt data upon every access to memory. Secondly, the
protectedmemory area is small (e.g., 128MB for Intel Skylake
CPU [9]), far less than the size of many accurate DNN mod-
els. For example, VGG-16 [67], a widely-used Convolutional
Neural Network (CNN) model, requires ≈1 GB of memory,
and even AlexNet [50], a shallow CNN model, requires ≈260
MB of memory. SGX on Linux supports the memory usage
beyond the PRM size through paging (Windows does not
support this and cannot runmodels larger than the PRM size).
However, execution of large DNN models incurs significant
overhead to frequently swap in/out pages from protected
enclave memory from/to the regular unprotected memory,
which results in additional encryption/decryption of data.

Occlumency addresses the performance challenge based
on a key observation: many developers use pre-trained public
DNN models rather than training their own private mod-
els. This is particularly true for large models because it is
highly expensive to train a large model, and most developers
do not have the expertise to train a fine model. As a result,
the confidentiality of those public models is not necessary
to be protected. Taking advantages of this observation, Oc-
clumency employs a suite of novel techniques to accelerate
DL inference inside the enclave. First, we devise on-demand
weights loading. We place the DNN model (i.e., weights) in
regular main memory and dynamically load a part of model
weights needed by the DL inference engine to the protected
enclave memory. This technique prevents high latency due
to frequent page swapping that could happen by loading the
entire DNNmodel in the enclave.Occlumency uses a hash to
check the integrity of the model weights to safeguard model
weights against being modified in the unprotected mem-
ory and ensure the correctness of model inference. Second,
Occlumency employs memory-efficient inference to reduce
memory usage during DL inference. In particular, it signifi-
cantly reduces memory usage to store the intermediate data
(i.e., feature maps) for inference. Also, we devise a parti-
tioned convolution technique to conduct convolution layer
computation with a small memory footprint; it consumes
far less memory than conventional convolution operations
that require a large memory space to reshape input data
to convert the convolutions into a single matrix multiplica-
tion (called convolution lowering). Furthermore,Occlumency
builds a parallel pipeline of weights copying, hash checking
and model inference to best utilize the hardware resources
to optimize the end-to-end system performance.
We have implemented Occlumency on both Linux and

Windows based on Caffe [48], a widely-used DL framework.
We also evaluated its performance with popular DNNmodels
including AlexNet [50], GoogLeNet [68], ResNet-50/101/152
[36], VGG-16/19 [67], and YOLO [63]. Experimental results
show that Occlumency significantly improves the speed of
DL inference, and is 3.0 - 4.3x (1.9x for GoogLeNet) faster

50
55
60
65
70
75
80

0.01 0.1 1 10 100

T
op

-1
 A

cc
ur

ac
y

(%
)

Number of Operations (G-FLOPs)

 ResNet
 SE-ResNet
 MobileNet-v1
 MobileNet-v2

Figure 1: Top-1 accuracy vs. Number of Operations.

than the in-enclave DL inference without our optimization
techniques. Compared to the native DL inference running
outside of enclave, Occlumency is only 72% slower. Com-
pared to on-device DL inference with Pixel XL, Occlumency
reduces the end-to-end model inference latency by 2.1x and
saves 53 - 91% of the energy cost at the device side.

The main contributions of this paper are:
• We propose and design the Occlumency system for
privacy-preserving remote DL inference using SGX.
We develop novel techniques to maximize the DL infer-
ence performance running in SGX enclave, including
on-demand weights loading, memory-efficient infer-
ence and parallel processing pipelines.

• We implement Occlumency on both Linux and Win-
dows including porting the widely-used Caffe frame-
work into SGX. We report implementation details and
share our experience learned in porting Caffe into SGX.

• We conduct comprehensive experiments to evaluate
the effectiveness of Occlumency with various DNN
models. Evaluation results show that Occlumency
significantly improves the performance of in-enclave
DL inference and outperforms on-device DL inference.

2 BACKGROUND AND MOTIVATION

2.1 Demand of Model-inference Offloading

It is known that there is a trade-off between model accuracy
and model size. For the same family of models, a larger model
with more layers/parameters has a larger model capacity
and thus a higher accuracy. At the same time, a larger model
requires more computation and leads to a longer inference
latency. For example, Figure 1 shows the trade-off between
the accuracy and the number of operations in FLOPs of the
state-of-the-art models of ResNet and MobileNet families
tested with ImageNet (reported in [36, 39, 40, 65]).
The above trade-off shows that it is highly desirable to

offload model inference to a cloud, especially for mobile apps
that require a high inference accuracy. Many apps have to
use a large model (note that even the large ResNet-152 has a
top-1 accuracy < 80%), and thus offloading is essential due to
its high computation cost. Offloading also helps reduce the

latency and energy cost of model inference using the pow-
erful computation resources of a cloud. Also, cloud-based
solutions can provide other advantages: saving the device
resources such as the battery, dealing with device hetero-
geneity, and supporting low-performance hardware.

In this paper, we seek a practical solution to preserve user
privacy in remote model inference, targeting at the mobile
apps that employ offloading to run highly-accurate large
models at low latency or energy cost. There is parallel re-
search on running small models on mobile devices by model
compression or designing new models1 [34, 35, 39, 44, 65],
which is complementary to our work.

2.2 Intel SGX

Intel SGX [9] is a set of extensions to the Intel architecture
for secure remote execution. It sets aside a secure region of
memory address space called an enclave. Code execution in
the enclave is strongly protected from attacks. SGX ensures
the confidentiality and integrity of code and data within the
enclave even if the operating system, the hypervisor and the
BIOS, are malicious. It also prevents hardware attacks such
as memory probes. Even malicious administrators of cloud
services cannot access the code and data in the enclave. SGX
supports remote attestation for a third-party owner to verify
the code and data loaded into the enclave.
The SGX enclave provides a hardware-assisted Trusted

Execution Environment (TEE) with a minimal attack surface
(i.e., the processor boundary). The memory region of the
enclave is called Processor Reserved Memory (PRM). The CPU
protects the PRM from all non-enclave memory accesses
including DMA accesses from peripherals. The size of PRM
is limited to 128 MB, among which the hardware carves out
≈ 90 MB as the Enclave Page Cache (EPC) and the rest is
reserved for the meta-data required by the Memory Encryp-
tion Engine (MEE) [32]. On Linux, SGX supports paging that
evicts rarely used EPC pages to unprotected main memory
outside the PRM range. To ensure the confidentiality and
integrity of the evicted EPC pages, SGX uses extra symmetric
key cryptography. With paging, a program in the enclave
may use more than 90 MB memory, at the cost of encrypting
and decrypting the evicted EPC pages.
Other hardware-assisted TEEs. We have also considered
other hardware-assisted TEEs. ARM TrustZone [7] and AMD
Secure Memory Encryption (SME) [27] can support large
memory size, but they require a trusted OS and thus have
a large Trusted Computing Base (TCB). They also cannot
protect against attackers with physical DRAM access. There
are also research efforts towards providing new TEE designs,

1New models may achieve higher accuracy with a smaller size than older
ones, but they do not break the accuracy-size trade-off. All the records on
model accuracy are from very large models.

0

1

2

3

4

5

6

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

In
fe

re
nc

e
La

te
nc

y
(s

ec
)

 Native SGX Enclave

Figure 2: Inference latency of various deep-learning

models in native environment and SGX enclave.

0
200
400
600
800

1000
1200
1400

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

M
em

or
y

U
sa

ge
 (M

B
) Pre-trained weights

 Computation
 EPC size limit

Figure 3: Memory usage of various DNN models com-

pared to the physical memory size limit of EPC.

such as Sanctum [26] and Keystone [13] targeting at RISC-V
platforms. They are not commercially available. Indeed, Intel
SGX is the most widely deployed TEE in today’s data centers.
Thus, we choose to use Intel SGX in our implementation, for
its strong protection, small TCB, and wide availability.

2.3 Deep-learning Inference in Enclave

To understand how DL inference may work on SGX, we con-
ducted an experiment on a Linux server. We first followed
the SGX SDK [10] and ported the Caffe framework into an
SGX enclave (§7). We enabled SGX paging so that the enclave
may use more memory. Then, we ran DNN models (AlexNet,
GoogLeNet, ResNet-50/101/152, VGG-16/19, and YOLO) in-
side the enclave and measured the latency. We compared to
the native case of running the models outside the enclave
using Caffe on the same server. Figure 2 shows the results.
Poormodel-inference performance in the enclave. From
Figure 2, we can see that running DL inference in the en-
clave is very slow, 6.4x slower than running in the native
environment outside the enclave. Two reasons cause this
poor performance: 1) the PRMmemory is slower than unpro-
tected memory due to the protection overhead of SGX, and
2) there was frequent EPC paging. As aforementioned, the
physical memory size of EPC is constrained to only 90 MB,
while the model inference is highly memory intensive. It re-
quires a large amount of memory for loading model weights
and performing inference computation, particularly for large
models. As shown in Figure 3, AlexNet, a primitive CNN

model, requires 260 MB memory, and VGG-19, a widely used
model, requires ≈1 GB memory space to load model weights,
store intermediate feature maps, and compute convolutions.
Even GoogLeNet, a lightweight model designed to run on
smartphone-like devices, requires a memory size slightly
larger than 90 MB. As EPC paging involves heavy compu-
tation overhead due to encryption [21, 76], it causes a sig-
nificant slowdown on the model inference running inside
the enclave. Furthermore, on Windows, as paging is not sup-
ported, it is impossible to run those models in the enclave.

The above experimental results motivate us to conduct the
work of this paper to design Occlumency and develop novel
techniques to optimize the performance of DL inference in
the enclave.
One may argue whether the physical memory size limit

of 128MB is fundamental or not, and such a limit might be
significantly increased (e.g., to 4 GB) in the next generation
SGX. While we agree that such a limit might be increased
(e.g., to 256 MB), but we believe that the increase is unlikely
to be significant, compared to the total memory size of a
server. SGX is designed to support many enclaves on a single
server, and each enclave is supposed to run only the trusted
functions (usually small ones) of a program. As all enclaves
have the same memory size limit (configured in BIOS and
cannot be dynamically adjusted) and the preserved physi-
cal memory region of each enclave is exclusively reserved
and thus cannot be shared by other enclaves or applications
outside enclaves. For this reason, it will be highly memory
inefficient and impractical to preserve a large physical mem-
ory region for each enclave. Moreover, it is likely that the
DNN models will be more complicated and get larger. We
believe that Occlumency is not a temporary solution only
for the current SGX hardware. Our proposed techniques will
bring constant values to future SGX devices as well.

3 PRIVACY AND THREAT MODEL

The security objective of Occlumency is to protect the pri-
vacy of mobile user inputs and outputs of deep learning
inference services hosted on untrusted clouds. This user data
protection is the top priority in terms of service security and
also enforced by laws like GDPR [1]. The deep learning mod-
els used for inference are assumed to be open source, which
is strongly advocated and practiced by both deep learning
research community and industry [3, 4, 46], especially for
large models pursuing accuracy and robustness.
There are three parties involved in our threat model, the

mobile user, the App developer, and the cloud platform.
The mobile user trusts the App developer in providing the
privacy-preserving inference service running on an untrusted
cloud platform rented by the App developer. The App devel-
oper trusts the corresponding Intel SGX enclave she deploys

App
Lib

Enclave (Protected Memory)

On-demand
Weights Loader

Model Integrity
Checker

Model
Weights

Unprotected
Memory

Memory-efficient Inference

…

Precomputed
Hash Values

hash_v[1]
hash_v[0]

…

hash_v[N]

Ring
Buffer

Initialization

User Data

Inference Output

Mobile
Device

Cloud / Edge Server

Feature Map
Allocation

Partitioned
Convolution

Figure 4: Occlumency system architecture. The shaded part indicates the enclave.

on a cloud as well as software executed inside it (after at-
testation supported by Intel [25]). The cloud platform is the
adversary in our threat model, and its goal is to steal user
inputs or thwart correct computations like damaging the
integrity of inference models.
The cloud platform is capable of accessing on-cloud soft-

ware and hardware resources except for the App developer’s
SGX enclave. We assume the cloud uses off-the-shelf hard-
ware, and GPUs are not used by the App developer, which is
orthogonal to work [72]. The SGX enclave is secure in terms
of both computations and memory footprints. The communi-
cation channel between the user and enclave is protected by
the App developer using the TLS or similar secure protocols.
We do not consider the SGX side-channel attacks [33, 81]
and rollback attacks, which can be prevented [55, 57], as well
as Denial of Services (DoS). The memory usage pattern of
model inference is dependent on the model architecture, not
user data. Thus, it is hard to infer user data from the memory
usage pattern. Protection of private models is also out of the
scope of this paper, although our system can be used for any
customized models without protecting their confidentiality.

4 OCCLUMENCY DESIGN

4.1 Design Goals

We designed Occlumency to achieve following goals:
Privacy protection throughout entireDL inference.Our
primary design goal is to protect the end-to-end offloading
process for DL inference. In particular, we aim to protect
sensitive raw input data of DL inference collected from the
users’ devices and inference results after DL inference. We
also seek to safeguard intermediate feature maps generated
during DL inference, which can be used by malicious attack-
ers to reconstruct input data or infer sensitive information.
Model integrity. The second goal is to prevent DNN mod-
els from being manipulated by attackers, which may create
wrong inference results. Occlumency should continuously
monitor whether the pre-trained model weights are modi-
fied at runtime and make sure to apply the correct original
weights throughout DL inference.

Minimal inference latency. Occlumency should perform
inference at a low latency while protecting privacy. The low
latency is essential to support interactive applications such as
speech recognition and user input prediction and to increase
the throughput of the cloud service. Naive DL inference in
SGX enclave slows down by 6.4x compared to the native
environment and thus it is essential to optimize the latency.
No accuracy loss. Occlumency aims to run unmodified
large DNN models (without compression, distillation, or ap-
proximation) to achieve high accuracy provided by those
models. This goal is important since cloud-added DL infer-
ence is likely to be used for applications that require high
accuracy based on large models.

4.2 System Overview

Figure 4 shows the architecture of Occlumency. On the
device side, Occlumency provides a library for a DL-enabled
app to interact with the remote server. The library is designed
to provide simple function calls for the app to initialize the
remote DL inference, send user data to the remote server,
and get the model-inference output from the server. The
initialization details are hidden from the app to make it easy
for developers to build apps, including setting up a secure
communication channel between the device and the server,
loading the model data (i.e., weights), creating the enclave,
and initializing the code and data structures in the enclave.
Then, the app may call the remote inference multiple times.
The user data and model output are transmitted using the
secure channel between the device and the enclave. The
server could be a remote cloud server or a nearby edge server.
The model weights are first loaded into the unprotected

memory outside the enclave. The on-demand weights loader
dynamically loads necessary weights into the enclave as re-
quired by the inference engine. The model integrity checker
ensures the integrity of the loaded model weights using
the pre-computed hash values. We designed the ring buffer
(constituting of multiple reusable sub-buffers connected cir-
cularly) to coordinate the weights loading, hash checking
and model inference for a parallel processing pipeline. The

memory-efficient inference engine executes model inference
in a memory-efficient way by managing the memory alloca-
tion of feature maps and using partitioned convolutions.
With this system design, Occlumency achieves all its

design goals. By running the whole DL inference engine
inside the enclave, Occlumency effectively protects the con-
fidentiality and integrity of the user data, the final model
output and all the intermediate feature maps. By storing all
the weights of the whole model in the unprotected memory,
Occlumency can run large state-of-the-art models without
any accuracy loss and model integrity is ensured by hash
checking. With on-demand weights loading and memory-
efficient inference, Occlumency avoids page swapping and
thus significantly reduces the model-inference latency.

5 ON-DEMANDWEIGHTS LOADING AND

INTEGRITY CHECKING

A key design decision in Occlumency is storing model
weights in unprotected memory outside the enclave and
loading the needed weights into the enclave on demand. We
made this decision since the enclave has a limited physical
memory size smaller than many widely-used DNN models,
which causes significant performance degradation as shown
in §2.3. This on-demand weights loading can do a better job
than page swapping in two folds:1) it directly reads themodel
weights from unprotected memory without the extra cryp-
tography overhead of page swapping; and 2) it knows more
about the internals of the model structure and the inference
procedure and thus may load the weights just before they are
needed by the inference engine, while page swapping knows
nothing about model inference and thus may wrongly swap
out the weights required by the inference engine.
Putting the whole model in unprotected memory calls

for a mechanism to ensure model integrity, as malicious
attackers may modify the model weights. For example, an
attacker may alter a speech-recognition model to issue an
intentional voice command to trigger undesirable actions on
the user’s device. Thus, it is critical to ensure the correctness
of the model inference. To do it, we propose to use hashing
to protect model integrity.
Note that Occlumency does not protect model confiden-

tiality as attackers can read the model data in unprotected
memory. Protecting model confidentiality is out of the scope
of this paper. However, if protecting model confidentiality is
necessary, Occlumency may fall back to allow loading the
whole model into the enclave at the cost of page swapping.

5.1 On-demand Weights Loading

After a model is loaded and stored in the unprotected mem-
ory, the base address of the model weights is passed into
the enclave. Upon an incoming model inference request, e.g.,

when the user sends an image for object recognition, the
on-demand weights loader dynamically loads (i.e., copies)
the needed weights into the enclave for model inference.

For efficientweights loading, the on-demandweights loader
takes advantages of the internals of model inference such as
layer types and data structures. As model inference is exe-
cuted layer by layer, the on-demand weights loader loads the
weights layer by layer, from the first layer of the model to the
last one. Ideally, the weights of each layer are already ready
in the ring buffer just before the inference engine starts to
execute that layer so that the inference engine does not need
to wait for the weights loading. After the execution of a layer
finished, the corresponding buffer is released so that it can
be reused to load the next layer.

Handling large layers. Most layers can fit into a single
buffer in the ring buffer. For example, convolutional layers
are usually computation intensive but small in size. How-
ever, some types of layers such as fully-connected layers
may be huge and a single buffer cannot load them. To han-
dle large layers, Occlumency divides them into blocks and
loads each block one by one. The majority of data in DNN
models is matrices and vectors. In dividing large layers into
blocks, Occlumency keeps the boundary of the matrix rows
and columns. Doing so makes it possible to compute the
multiplication of two large matrixes by computing the multi-
plications of a set of small matrix blocks. Consequently, the
inference engine may partially execute a large layer using
its already loaded blocks. Thus, that are even larger than the
total size of the ring buffer can be supported.

5.2 Model Integrity Checking

Model integrity checking happens after the ring buffer in
the enclave loads the weights. Occlumency employs a hash-
based method to ensure the model integrity, which consists
of an offline hash building phase and an online hash check-
ing phase. The offline hash building phase is performed in
a trusted environment. Occlumency follows the same data
boundary used in the on-demand weighs loader to compute
hash values. For each small layer, a hash value is computed
from the weights of the layer. A large layer is divided into
small blocks of the same block size used in the weights load-
ing, and a hash value is computed for each block. All the
pre-computed hash values remain loaded in the enclave, and
are used in online hash checking as shown in Figure 4. They
never leave the enclave, and thus, are always protected.

In the online hashing checking phase, after each layer or
layer block is loaded into the ring buffer, the model integrity
checker computes a new hash value from loaded weights.
Then the new hash value is compared to the correspond-
ing pre-computed hash value of the same weights. If the two
hash values are the same, the model integrity checker marks

the loaded weights as ready for inference and the inference
engine can safely use the weights for model inference. Oth-
erwise, the model integrity checker raises an error, stops the
inference engine and returns an error message to the device.
It is up to the app to handle the failure of inference.
Parallel processing pipeline. Occlumency uses the ring
buffer to coordinate the executions of weights loading, hash
checking and model inference, and builds a parallel pro-
cessing pipeline for efficient model inference. Three threads
are created for weights loading, hash checking and model
inference, respectively, and executed in parallel. Once the
ring buffer is ready with a set of weights, the model integrity
checker immediately starts to compute and check the hash of
the weights. At the same time, the on-demand weights loader
starts to load the next set of weights. Similarly, immediately
after the successful hash checking, the model inference en-
gine starts to execute the loaded weights, and the model
integrity checker goes to check the newly loaded weights.
After the inference engine used the weights to compute the
layer, it releases the buffer of the weights (if not shared) for
loading new weights.

Copying all the model weights into the enclave and check-
ing their hash values introduce considerable overhead, as
shown in §8.2. For some applications, it may not require
preserving model integrity. In that case, we can apply a dif-
ferent model loading policy. For example, one may want to
directly read model data from unprotected memory with-
out any data copying and hash checking, or only check the
model integrity once in creating the enclave. In §8.2, we mea-
sure the performance of different weights loading policies
for the trade-off between the model-inference latency and
the model-integrity protection.

6 MEMORY-EFFICIENT INFERENCE

Another critical challenge for SGX-based DL inference is the
lack of memory required for inference. Inference should run
within ≈80 MB of memory given that the available heap size
of EPC is ≈ 85 MB and a part of EPC (5 MB) is already taken
to load the model network. Moreover, at least 20 MB of mem-
ory is required to load the model weights to get a benefit of
parallelism as described in §5.2. However, CNN execution
often requires a higher memory space than the available
memory (e.g., ≈116 MB for conv1_2 layer of VGG-16). Un-
less handled properly, frequent paging occurs during the
inference, which slows down inference speed significantly.
Memory usage break-down. To understand the memory
requirements of inference, we break down the memory usage
of VGG-16, a widely used CNN model. Table 1 shows the
result. We identified that the dominant memory usages are
two folds: storing feature maps and buffers for convolution
computation. In total, feature maps require 60MB of memory,

Table 1: Memory usage of VGG-16 per layer

Type

Memory Usage (KB)

Max. Avg. Total

Intermediate feature maps 25,690 6,963 60,987
Convolution lowering 115,605 25,150 326,947
Others (pooling/dropout mask, etc.) 1,192 1,163 6,138

and convolution computation requires 327 MB. Moreover,
some convolutional layers require memory larger than the
upper bound of EPC heap size for a single layer. To address
the problems, we devised two techniques: memory-efficient
feature map allocation and partitioned convolution.

6.1 Memory-efficient Feature Map

Allocation

Unlike pre-trained weights, Occlumency manages the fea-
ture maps (i.e., the outcome of a Neural Network (NN) layer)
inside the enclave. Thus, it is essential to reduce the mem-
ory size required to store feature maps. A naive approach
to keep the entire feature maps throughout the inference
would consume high memory space (e.g., ≈60 MB memory
for VGG-16), which fits within EPC but leaves too little space
for convolution computation.
Occlumency stores feature maps only for the minimum

required duration and removes it right away. For instance,
a convolutional layer creates a feature map as its output
and only the next layer utilizes the feature map. Since the
feature map size and its validity are known for a given model,
Occlumency can plan how much memory space to allocate
for storing feature maps for the entire model during the
model initialization phase.
The approach is based on the observation that DL infer-

ence computes each layer sequentially not in parallel. The
sequential execution allows Occlumency to maintain the
feature maps only for a single layer at a time, which is not
too large. The system releases the occupied memory for the
processed feature map. This way, Occlumency can save
memory for storing feature maps significantly.
Here, a challenge is that some models use certain fea-

tures maps multiple times during inference. For instance,
GoogLeNet contains inception modules which consist of
multiple convolutional layers sharing the same parent layer,
and several layers in ResNets reuse the previous feature
maps from past layers. In case of such models, identifying
the usage dependency for a feature map is essential.
Occlumency handles this issue by analyzing the struc-

ture of the model in advance. Given a model, the usage of
each feature map is pre-determined and it is possible to plan
when to release each feature map from the enclave mem-
ory. In the initialization phase, Occlumency identifies how
many future layers access a feature map, and in the inference

Figure 5: im2col-based convolution lowering.

(kernel size: 2x2, stride: 1, input feature map size: 3x3)

phase, it releases the feature map after being used for the
pre-calculated times.

6.2 Partitioned Convolution

Apart from storing feature maps, convolution layer oper-
ations require high memory space (see Table 1), resulting
in frequent EPC page swapping and slowdown of inference
speed. In particular, we identified that the high memory
usage results from convolution lowering, the most common
method to perform fast convolution operations. Convolu-
tion lowering reshapes the input feature map to convert
many convolutions into a single matrix multiplication. The
reshaped size is much bigger than its original size (e.g., N 2

times bigger when an N × N kernel is used), causing signifi-
cant memory overhead. We address the problem by partition-
ing the convolutions into multiple matrix multiplications.

6.2.1 Memory Cost of Convolution Lowering.
We first looked into convolution lowering, which is the main
cause of memory usage. Convolution lowering is a com-
mon technique to accelerate the computation of convolution
layers [23, 45, 52]. In particular, im2col-based convolution
lowering [23, 47] is widely used in various DL frameworks
including Caffe and TensorFlow [14].

As shown in Figure 5, im2col-based convolution reshapes
the input feature map to convert a convolution operation into
single matrix multiplication. Then, linear algebra libraries
such as OpenBLAS [74] or Intel MKL [73] optimizes the
matrix multiplication using CPU cache based on the fact
that the matrix multiplication reads each element of matrix
redundantly. The bigger the matrix is, the more redundant ac-
cess happens to an element. Thus, this optimization becomes
more efficient for larger matrices. As a result, im2col-based
convolution lowering, which converts multiple small matrix
multiplications required for convolution into a single large
multiplication, is much faster than the direct convolution.
However, convolution lowering trades off speed against

memory overhead. In particular, the reshaping of the feature
map duplicates each feature element multiple times to use
matrix multiplication. As shown in Figure 5, the data for
“E1” is copied 4 times through the im2col reshaping. The
duplication occurs as many times as the size of the kernel

0

0.4

0.8

1.2

1.6

co
nv

1_
1

co
nv

1_
2

co
nv

2_
1

co
nv

2_
2

co
nv

3_
1

co
nv

3_
2

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

co
nv

5_
3In

fe
re

nc
e

La
te

nc
y

(s
ec

)

Direct convolution Partitioned convolution

Figure 6: Latency of convolution layers of VGG-16

with direct convolution and partitioned convolution.

Figure 7: Partitioning convolution by 2.

with stride = 1 (4 in Figure 5). For VGG-16/19 models, the
data can be duplicated nine times as they use 3x3 kernels.
A naive way to handle the memory overhead of convo-

lution lowering is to use direct convolution without any
reshaping of input data. However, a naive direct convolution
requires many small matrix multiplications, which cannot
take benefits from optimization for large matrix multipli-
cation. Figure 6 shows the slow inference speed of direct
convolution. There has been an effort to improve the speed
of direct convolution [84], however it requires further inves-
tigation to implement it in SGX and evaluate its performance
benefit.

As alternatives, FFT-based convolution [38] andWinograd-
based convolution [52] are proposed. Nonetheless, these ap-
proaches are not designed to reduce the memory overhead,
and trade-off inference speed against the memory overhead
(which is not suitable for Occlumency where memory space
is significantly limited).

6.2.2 Partitioned Convolution.
We propose a partitioned convolution approach, which re-
quires much less memory than the existing convolution low-
ering, but still takes advantage of optimization done for large
matrix multiplication.

This approach divides a singlematrixmultiplication, which
is derived from the convolution lowering, into multiple small
ones. As shown in the equation 1, the matrix multiplication
can be expressed as the sum of multiplications of partitioned

0
20
40
60
80

100
120
140

co
nv

1_
1

co
nv

1_
2

co
nv

2_
1

co
nv

2_
2

co
nv

3_
1

co
nv

3_
2

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

co
nv

5_
3

M
em

or
y

U
sa

ge
 (M

B
)

im2col
MEC
Partitioned convolution

Figure 8: Memory requirement of traditional im2col,

MEC, and partitioned convolution for VGG-16.

matrices that part of the original matrix. The size of the
partitioned matrix will be reduced by the number of parti-
tions, thereby reducing the required memory space for the
convolution layer at a given time.

O =
[
I1 I2 . . . In

]
·
[
K1 K2 . . . Kn

]⊤
=

n∑
i=1

Ii ·Ki (1)

Figure 7 illustrates how Occlumency computes the input
feature map through the convolution layer partitioned by 2.
The DL inference engine first lowers half of the input feature
map into the im2col buffer, computes matrix multiplication
with a half of the kernel matrix, and obtains the partial output.
Then, it repeats with the other half of the input feature map
to get another partial output. The sum of both partial outputs
becomes the final output feature map of the layer. The engine
repeats this step as many times as the number of partitions;
the im2col buffer is reused for each step.

The number of partitions for a convolutional layer is deter-
mined by the memory requirement for inference and avail-
able enclave memory. More specifically, Occlumency dou-
bles the number of partitions until the memory space for
lowered input feature map requires less than 32 MB of the
memory space (here, we observe that 32 MB is the safe lower
bound of the available enclave memory for inference). This
approach can limit the maximum memory usage by convo-
lution lowering so that Occlumency can operate within the
enclave’s memory limit regardless of the model.
As a possible alternative, Cho et al. proposed MEC [24]

to optimize the memory usage for im2col-based convolution
lowering. Unlike traditional convolution lowering that low-
ers input feature maps in both column-wise and row-wise,
MEC lowers input feature maps in column-wise only. In
the case of VGG-16, MEC requires three times less memory
compared to traditional im2col-based convolution lowering.
However, the memory optimization of MEC is not enough
to be applied to Occlumency since it cannot manage mem-
ory usage adaptively. The memory reduction ratio of MEC
is fixed to the width of the kernel (3 for all layers in VGG-
16), and this results in insufficient memory reduction for
some layers. Figure 8 shows the memory usage of MEC and

Table 2: Lines of modified or added code

Implementation Lines of code

Caffe modification 3,388
3rd-party lib modification 2,570
Enclave management 2,697
Hashing, parallelism 3,587
Others 563

Total 12,805

partitioned convolution with VGG-16 model. For the layer
conv1_2, MEC requires ≈40 MB only for convolution low-
ering and exceeds the EPC size limit with other memory
usages such as weights and feature map loading. In case of
layer conv4_1 - conv5_3, MEC still reduces the memory us-
age effectively, but it generates unnecessary computational
overhead. Besides, Occlumency determines the number of
partitions balancing the memory usage not to exceed the
EPC page limit while minimizing the inference latency.

7 IMPLEMENTATION

We have implemented Occlumency based on Caffe [48], a
widely-used deep-learning framework, for both Linux and
Windows environments. We modified or added 12,805 lines
of code in total to implement our system as shown in Table 2.
Building Enclave. The trusted component of Occlumency
running in an enclave was built as a shared library with ≈85
MB of HeapMaxSize and ≈262 KB of StackMaxSize. The
trusted components contain the source code of modified
Caffe, 3rd-party libraries, and other components of Occlu-
mency including ring buffer, hashingmechanism, and ECALL
functions interfacing with the untrusted component.
SGXCompatibility. In SGX enclave, system calls and dynamic-
link libraries are forbidden. We ported 3rd-party libraries
used in Caffe including OpenBLAS [12], boost [66], and
Google protobuf [6]. We blocked all system calls in the 3rd-
party libraries and implemented additional interfaces such
as file operation to replace the system calls.
CaffeModification. For ease of implementation, we created
Caffe Net in both enclave and outside of the enclave. A net
created out of enclave loads trained weights in untrusted
memory and passes the address of individual weights into
the enclave, and a net in the enclave proceeds the inference.
For each layer, it forwards the input feature map with the
weights loaded in ring buffer and releases the memory of
weights after the forwarding.
Model Integrity Checking. As we explained in § 5.2, Oc-
clumency utilizes three threads for weight loading, hash
checking, and inference. These threads share the ring buffer,
and they are synchronized by three operations: read, write,
and consume. The weight loading thread continuously copies

Table 3: CNN models specifications

(Conv: convolutional layer, FC: fully-connected layer)

Model

Input

shape

Weight size (MB)

Arch.

Conv FC Total

AlexNet 227x227 9.1 229.0 238.1 5conv, 3fc
GoogLeNet 224x224 23.3 4.0 27.3 57conv, 1fc
ResNet-50 224x224 91.6 8.0 100.0 53conv, 1fc
ResNet-101 224x224 165.6 8.0 174.4 104conv, 1fc
ResNet-152 224x224 226.5 8.0 235.7 155conv, 1fc
VGG-16 224x224 57.4 483.0 540.4 13conv, 3fc
VGG-19 224x224 78.2 483.0 561.2 16conv, 3fc
YOLO 448x448 235.0 826.4 1061.3 24conv, 2fc

the weights from untrusted memory into weight buffer call-
ing write while the hash checking thread and inference
thread access the loaded weights with read. If the weight
is not loaded yet, both hash checking thread and inference
threadwait for theweight loading thread. The loadedweights
are released from enclave memory when the inference thread
calls consume after each layer forwarding. For hashing, we
used xxHash [8], a high-speed non-cryptographic hash func-
tion.

The maximum size of the weight buffer is decided accord-
ing to the remaining enclave heap size. Since the memory
usage for each layer differs, we chose the maximum weight
buffer size dynamically. As a result, the maximum weight
buffer sizeWmax (k) for kth layer is defined as

Wmax (k) = H −max(Lk ,Lk+1, . . . ,LN) (2)

where H denotes the remaining heap size in enclave, Li
denotes the memory used by ith layer, and N denotes the
number of layers in the model.
Mobile App. We also implemented an image processing
Android app to evaluate the end-to-end performance. It sends
images to a server for model inference via Occlumency and
receives the results back. The images are re-sized to the
shape of the model’s input (e.g., 227x227 for AlexNet) and
encrypted with AES before transferred.

8 EVALUATION

We evaluate the performance of Occlumency in terms of
inference latency and memory usage with a variety of DNN
models. We also measure the energy saving of a smartphone
by offloading the model inference to a remote server.

8.1 Experimental Setup

Models. We evaluate our system with well-known CNN
models shown in Table 3. The models were provided by
the Caffe Model Zoo [11], pre-trained with the Imagenet
(ILSVRC 2012) dataset [64]. AlexNet and VGG models con-
tain three fully-connected layers with a large weight size.

However, GoogLeNet and ResNet models contain only a
single fully-connected layer with a very small weight size.
Instead, they have a large number of convolutional layers.
Baselines.We compare Occlumency to three baseline ap-
proaches: 1) SGX-paging that runs model inference inside
the enclave with page swapping enabled but without using
the optimization techniques of Occlumency, as described in
§ 2.3, to show the effectiveness of Occlumency in reducing
the in-enclave model inference latency; 2) Native that runs
model inference in unprotected memory outside the enclave,
to study the overhead of Occlumency in preserving privacy;
and 3) On-device that runs model inference on a smartphone,
to show the enhanced inference speed and the energy saved
in the smartphone by offloading model inference to a remote
server.
Hardware. We use a Linux machine equipped with an Intel
Core i7-7700 (Kabylake) 3.6GHz CPU of 4 cores and 16 GB
DDR4 RAM. As on Windows, EPC page swapping is not
supported, and thus we cannot run the SGX-paging baseline
approach in Windows, we only report the experiment results
on Linux. To run the On-device baseline approach, we use
three smartphones: Nexus 5X (Qualcomm Snapdragon 808
1.8GHz CPU, 2GB RAM), Google Pixel XL (Qualcomm Snap-
dragon 821 2.15GHz CPU, 4GB RAM) and Google Pixel 3 XL
(Qualcomm Snapdragon 845 2.80GHz CPU, 4GB RAM).

8.2 Inference Latency

We first measure the inference latency that is the total time
to execute a model on user input to generate the output.
All the error bars are only ≈1% and thus not shown in the
figures.
Inference speed improvement in SGX enclave. Figure 9
shows the results of inference latency in Occlumency and
SGX-paging. Occlumency significantly outperforms SGX-
paging, reducing the inference latency by 3.6x on average,
which demonstrates the effectiveness of the optimization
techniques used in Occlumency, including the on-demand
weights loading, the memory-efficient inference and the par-
allel processing pipeline. GoogLeNet has only a 1.9x per-
formance improvement despite its small fully-connected
layer portion. This is because the memory size required by
GoogLeNet is just over 90 MB, which incurs less frequent
EPC page swapping than other models.
Inference latency overhead compared to native Caffe.

Figure 10 shows the results of inference latency in Occlu-
mency and native Caffe. It shows that compared to native
DL inference running outside the enclave, Occlumency still
introduces considerable overhead, ranging from 22% to 113%
and with an average value of 72%. This overhead is the cost
paid for preserving user privacy. AlexNet and VGG-16/19

0

1

2

3

4

5

6

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

In
fe

re
nc

e
La

te
nc

y
(s

ec
)

 SGX-paging Occlumency

Figure 9: Comparison with SGX-paging.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

In
fe

re
nc

e
La

te
nc

y
(s

ec
) Native Occlumency

Figure 10: Comparison with Native.

0

10

20

30

40

50

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

In
fe

re
nc

y
La

te
nc

y
(m

s)

 Batch-1
 Batch-4
 Batch-16
 Batch-64

Figure 11: Inference latency of Native with GPU.

with large fully-connected layers show a 79% to 113% slow-
down, while GoogLeNet and ResNet have a smaller over-
head. In particular, the small GoogLeNet model runs only
22% slower than native Caffe.
ComparisonwithGPU. For further understanding, we also
measured the inference latency under Native environment
using GPU: NVIDIA Tesla P100 16 GB. Figure 11 shows the
results with various batch sizes.2 Compared to Occlumency,
GPU-based cloud performs ≈18x faster for GoogLeNet and
ResNets, and ≈125x faster for AlexNet and VGG-16/19.

Since Occlumency is a CPU-only solution, it can not take
advantage of batching. Also, it is difficult to support batching
due to its limited memory. However, with multiple enclaves,
Occlumency can support parallel inferences.
Effect of parallelism.Aswe described in §5.2,Occlumency
utilizes three threads for on-demand weight loading, hash
checking and DL inference engine to form a parallel process-
ing pipeline. To evaluate the benefit of the parallelism, we
2ResNet-101/152 fail to run with batch size >16 due to insufficient memory.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

In
fe

re
nc

e
la

te
nc

y
(s

ec
) Sequential Parallel

Figure 12: Speed improvement with parallelism.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

In
fe

re
nc

e
La

te
nc

y
(s

ec
) Policy 0 Policy 1 Policy 2

Figure 13: Inference latency of different policies.

Table 4: Weight corruption attacks

Attacks Description

A1 Naively corrupt weight before inference
A2 Corrupt weight right after hashing
A3 A2 + restore after inference

Table 5: Model integrity checking policies

(O: detect always,△: possibly detect, X: cannot detect)

Policy Checking scheme A1 A2 A3

Policy 0 None X X X
Policy 1 Hash only O △ X
Policy 2 Weight load & hash O O O

compared the inference latency with and without the paral-
lelism as shown in Figure 12. It shows that the parallelism
reduces the inference latency by 17.5% on average.
Alternative model-integrity-checking policies. As dis-
cussed in §5.2, we implemented model integrity checking
in Occlumency. However, faster inference speed may take
priority over high-level integrity in cases where the service
is less sensitive to model contamination.

To study the trade-off between model-integrity protection
and inference performance, we measured the performance
of three model-integrity-checking policies, as shown in Ta-
ble 5 including whether each policy can address the three
weight corruption attacks described in Table 4. Policy 0 di-
rectly reads weights from unprotected memory and does
nothing to preserve the model integrity. Policy 2 is the de-
fault policy used in Occlumency as described in §5.2. It does
both weights copying and hash checking to ensure model

Table 6: Maximum enclave memory usage of compu-

tation for small models (weight loading is excluded)

AlexNet Google Res-50 Res-101 Res-152

Max Memory
Usage (MB) 17.1 20.3 22.1 22.5 23.0

0
10
20
30
40
50
60
70
80
90

in
pu

t
co

nv
1_

1
re

lu
1_

1
co

nv
1_

2
re

lu
1_

2
po

ol
1

co
nv

2_
1

re
lu

2_
1

co
nv

2_
2

re
lu

2_
2

po
ol

2
co

nv
3_

1
re

lu
3_

1
co

nv
3_

2
re

lu
3_

2
co

nv
3_

3
re

lu
3_

3
co

nv
3_

4
re

lu
3_

4
po

ol
3

co
nv

4_
1

re
lu

4_
1

co
nv

4_
2

re
lu

4_
2

co
nv

4_
3

re
lu

4_
3

co
nv

4_
4

re
lu

4_
4

po
ol

4
co

nv
5_

1
re

lu
5_

1
co

nv
5_

2
re

lu
5_

2
co

nv
5_

3
re

lu
5_

3
co

nv
5_

4
re

lu
5_

4
po

ol
5

fc
6

re
lu

6
dr

op
6

fc
7

re
lu

7
dr

op
7

fc
8

pr
ob

M
em

ot
y

U
sa

ge
 (M

B
) BLAS others weight feature map conv lowering

Figure 14: Example memory usage with VGG-19.

integrity. Unlike policy 2, policy 1 does hash checking but
does not copy weights into the enclave. Same to policy 0,
it directly reads weights in untrusted memory (after hash
check). It is faster than policy 2 but cannot prevent advanced
attacks aware of memory access of Occlumency as shown in
Table 5. Note that all the three policies preserve user privacy.

Figure 13 shows the result. Even policy 1 does hash check-
ing, it is only about 2 - 4% slower than policy 0, for the benefit
of parallelism. However, policy 2 is much slower, 27% slower
than the others due to the data copy overhead. AlexNet
has an overhead of 79% with policy 2, due to its large fully-
connected layers. Fully-connected layers are highly memory
intensive with a large number of weights, and thus AlexNet
suffers from the overhead of weights copying.

8.3 Enclave Memory Usage

We next measure the memory usage breakdown of Occlu-
mency. Table 6 shows the maximum memory usage (exclud-
ing the memory of weights loading) for AlexNet, GoogLeNet,
and ResNets. With these models, an inference can be con-
ducted within 25 MB of memory for storing feature maps,
forwarding convolutional layer, etc. Occlumency uses fixed
50 MB of enclave memory for the ring buffer to store weights,
which leads to more benefits of parallelism.

For the large models including VGG-16/19 and YOLO, the
available memory size for the ring buffer is less than 50 MB.
Thus, the maximum buffer size for weights changes dynam-
ically. As an example, Figure 14 shows the enclave heap
memory utilization for each layer in VGG-19. As CNN layers
locate in the front part of models and have large feature maps
requiring a large buffer for convolution lowering, we can see
that the memory allocated for weights starts with ≈20 MB
and increases as each layer is forwarded. By this dynamic
memory control, Occlumency ensures the total memory

0
0.5

1
1.5

2
2.5

3
3.5

4

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

In
fe

re
nc

e
La

te
nc

y
(s

ec
) Nexus 5X

 Pixel XL
 Pixel 3 XL
 Occlumency (policy 1)
 Occlumency

Figure 15: Comparison with On-device.

0

0.5

1

1.5

2

2.5

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

In
fe

re
nc

e
La

te
nc

y
(s

ec
)

 Pixel 3 XL
 Occlumency (4 Mbps)
 Occlumency (16 Mbps)
 Occlumency (64 Mbps)

Figure 16: Inference latency under different network

bandwidth.

usage is always under the available EPC memory size (85
MB) and thus avoids EPC paging for maximum performance.

8.4 Comparison with On-device Inference

We also compare Occlumencywith the on-device baseline to
show the benefits of remote DL inference in terms of latency
reduction and energy saving. We built the original Caffe via
Android NDK with arm64-v8a ABI and installed it on the
smartphones. For the fair comparison, we used the mobile
app described in §7 to measure the end-to-end latency of Oc-
clumency including the network latency. The smartphones
are connected to TP-Link AC1900 802.11ac wireless router
[5] with 2.4 GHz band and 600 Mbps of maximum bandwidth.
Inference latency. Figure 15 shows the inference latency
of running CNN models on the smartphones compared to
Occlumency. 3 In average, Occlumency is 2.1x faster than
Pixel XL and 2.0x faster than Pixel 3 XL. For a higher speed
of Occlumency with policy 1, it achieves inference speed
2.6x faster than Pixel XL and 2.4x faster than Pixel 3 XL. In
the case of Nexus 5X, Occlumency is 5.7x and 4.8x faster
with policy 1 and 2, respectively. These results demonstrate
that remote DL inference can significantly reduce inference
latency and thus improve user experience, in addition to
saving computation resources of smartphones.
Network conditions. Since the performance of Occlumency
is affected by network conditions, we conducted an addi-
tional experiment to evaluate Occlumency with limited net-
work bandwidth. As shown in Figure 16, with the exception
3Nexus 5X fails to run VGGs and YOLO due to insufficient memory.

0
50

100
150
200
250
300
350

Alex Google Res50 Res101 Res152 VGG16 VGG19 YOLO

 On-device Occlumency

En
er

gy
 C

on
su

m
pt

io
n

(μ
A

h)

Figure 17: Energy consumption comparison.

Table 7: Compressed models specifications

Alias Model

Compression

Method

Compression

Rate

M1 AlexNet DeepCompression [34] 27x
M2 VGG-16 Low-rank regularization [69] 5x

Table 8: Light-weight architecture models

Alias Model Weight Size (MB) Architecture

M3 SqueezeNet [44] 4.8 26conv
M4 MobileNet [39] 16.6 28conv
M5 MobileNetV2 [65] 13.8 54conv

of AlexNet, Occlumency outperforms On-device in case of
Pixel 3 XL even with a network bandwidth of 4 Mbps.
Energy consumption. We measured the energy consump-
tion of Pixel XL with Monsoon power monitor [2]. Figure 17
shows the results. Except for AlexNet4, using clouds to run
DL models with Occlumency consumes 2.1 - 11.7x less en-
ergy of smartphone than running them on a smartphone.
Thus, Occlumency (and remote DL inference in general) can
significantly reduce the energy cost on mobile devices.

8.4.1 Compressed and Light-weight Models.
As many optimization techniques have been proposed to
compress large models into small ones (e.g., weight compres-
sion [34, 35], low-rank factorization [49, 69], knowledge dis-
tillation [83]) or design new light-weight models [39, 44, 65],
one may wonder how Occlumency may compare with run-
ning those compressed or light-weight models (tiny models)
on device. We did such a comparison using the models in
Table 7 and Table 8 and the same Android app.

Figure 18 shows the results. First, we compare the perfor-
mance of Occlumency and SGX-paging with compressed
and light-weight models. As shown in Figure 18, it is clear
thatOcclumency is also beneficial for tiny models. Although
tiny models, especially SqueezeNet and MobileNets, have
very small weight sizes, they require a memory which ex-
ceeds the memory limit of SGX and leads to paging.
4AlexNet contains a small number of convolutional layers and requires less
computation. As a result, energy cost for network transmission is higher
than the reduced energy for the computation by cloud offloading.

0
0.5

1
1.5

2
2.5

3
3.5

M1 M2 M3 M4 M5

In
fe

re
nc

e
La

te
nc

y
(s

ec
)

 SGX-paging
 Pixel XL
 Pixel3 XL
 Occlumency

Figure 18: Inference latency of tiny models.

Compared to on-device case, in average, Occlumency is
2.2x faster than Pixel XL and 1.7x faster than Pixel 3 XL.
This implies that Occlumency is still faster than on-device
inference with compressed/light-weight models designed
for mobile devices, although the improvement is not always
significant. Note that Occlumency is not designed to replace
on-device model inference using small models. Instead, we
enable privacy-preserving, low-latency remote model infer-
ence for the apps that leverage a cloud to run large models.

9 DISCUSSION

Supported models. In this paper, we focused on commonly
used CNN models, especially vision models, in Occlumency.
Occlumency supports not only common layers used in CNN
models including convolution and fully-connected layers
but also LSTM and embedding layers for RNN models. We
envision that our method adopted in Occlumency can be
easily applied in other layers; yet, it cannot support models
that require to maintain large feature maps for a long time
such as image-to-image models due to insufficient memory.
Though DNN models based on low-resolution images

(224x224 - 448x448), which follow the typical practice, are
used in our evaluation, models using larger size of input can
be supported by Occlumency. It is true that a larger image
requires a longer transmission time, but it will also increase
the number of computations for inference and maximize the
benefits of using the cloud.
Side-channel attacks. Prior studies suggested various side-
channel attacks to SGX applications (on memory manage-
ment [75], and CPU cache [22, 30, 33]) although SGX pro-
vides strong confidentiality and integrity of codes and data.
In particular, the authors of [70] showed that the side-channel
attacks usingmemory access pattern can extract the sensitive
data during the deep-learning inference task in the enclave.
Currently, we did not focus on the side-channel attacks. For
the future work, we can apply prior techniques such as [70]
to protect enclave data from side-channel attacks.
Lack of GPU. GPU cannot be used with the SGX enclave.
Building a trusted execution environment for GPU and en-
abling DL inference in the environment remains as an impor-
tant future research direction [72]. Occlumency (using the

CPU-based DL execution), however, make faster and energy-
efficient DL inference possible compared to on-device DL
inference to protect user privacy.
Model training and fine-tuning. Occlumency focuses on
model inference. It is difficult to train or fine-tune a model
inside SGX enclave, but [58, 82] proposed efficient methods
for model fine-tuning. We leave this as a future work.
Hardware accelerators onmobile devices. Recently, ded-
icated AI chipsets have been built into mobile devices, e.g.,
Huawei NPU [17]. Despite the increased power of the hard-
ware accelerators, the cloud-driven method is still relevant
due to its benefits in energy saving and easy deployment.
Further, it is also a trend to build hardware accelerators for
the cloud (e.g., Google TPU [16]) and consideration of AI
accelerators could be a possible expansion of this study.

10 RELATEDWORK

Privacy-preserving distributed deep learning. To pro-
tect the user privacy, some previous works [54, 59] lever-
aged the concept of distributed deep learning. They offload
non-private part of the deep learning functionality on to the
cloud, whereas the client (e.g., user’s smartphone) performs
the private computation. These methods, however, incur ex-
tra computational and battery overhead on the client side
when the design of the DNN pipeline becomes more com-
plicated. They also impose heavy communication overhead
to send large feature maps to the cloud. In contrast, Oc-
clumency achieves efficient and transparent execution of
DL-inference tasks of a given state-of-the-art DL model.
Other methods for preserving privacy. Various privacy-
preserving methods have been proposed even before DL
became a hot research topic, such as encryption-based opera-
tions [61], randomized noise addition [19], k-anonymity [53],
and hybrid deep learning [60]. While such methods may be
applied for DL, they are either very computation intensive,
or designed for low-dimensional data. Thus, they are hard
to be applied to high-dimensional DL, or cannot protect the
end-to-end model inference pipeline.
Running ML/DL in SGX. There have been several prior
works to protect user information in ML/DL inference tasks
in the cloud. Ohrimenko et al. [56] investigated data oblivi-
ousness for a range of Machine Learning algorithms (e.g., neu-
ral networks, support vector machines, and decision trees)
applied in SGX. Chiron [41], Ryoan [42], and Slalom [71]
used SGX for ML-inference tasks, including both training
and inference. They both enable data holders to train ML
models on an outsourced server without revealing their train-
ing data. None of them addresses the performance issue of
SGX or ports a widely-used DL framework like Caffe into
SGX.

DeepEnclave [31] aims at securing user input during DL
inference using SGX. To overcome the SGX’s limited mem-
ory size, the system splits the DL network – it executes the
first few layers in an enclave, and latter layers outside the
enclave. As a result, DeepEnclave only copes with input data
protection. However, Occlumency provides much stronger
privacy protection, securing not only the user input but also
the whole end-to-end pipeline of DL inference including all
the intermediate feature maps and the final inference output.
Occlumency also preserves model integrity.

Privado [70], to defend side-channel based attacks on DNN
models, loads several DNN models inside the SGX. Doing so
imposes an even higher requirement for memory usage in
the enclave. Our work is complementary with Privado and
Occlumency can be used together with Privado to improve
the model inference performance.

Low-memory deep learning. Several approaches have been
proposed to optimize the DNN models including model com-
pression [51], distillation [83], half-floating point operation [43],
parameter quantization [29, 77], and binary layer [62]. These
methods not only drop the accuracy of the model, but also
mostly focus on reducing the model parameters, which still
require large memory size for computation.

MEC [24] and direct convolution [84] have been proposed
to optimize memory usage of convolutional layers without
any modification of the model. Yet, these methods are not
suitable for Occlumency compared to our partitioned con-
volution as explained in §6.2.2.

11 CONCLUSION

We propose Occlumency, a novel cloud-driven solution to
protect user privacy while taking benefit from powerful
cloud resources to run large DNN models for high accu-
racy and low latency. It leverages SGX enclave to execute
DL inference and protect user privacy throughout the end-
to-end offloading. We implemented Occlumency based on
Caffe, and our experiments show thatOcclumency improves
the in-enclave inference speed by 3.6x and imposes only an
overhead of 72% compared to the native inference. Also, it
achieves 2.0x faster inference and up-to 91% of energy saving
compared to on-device inference.

12 ACKNOWLEDGEMENTS

We thank our shepherd Nicholas D. Lane and the anony-
mous reviewers for their valuable comments. This work
is partly supported by the National Research Foundation
of Korea (NRF) funded by the Ministry of Science and ICT
(2017R1A2B3010504, 2017M3C4A7065963, 2019R1C1C1006088),
NSFC-61872180, NSFC-61802007, and MSRA Collaborative
Research 2018 Grant Award.

REFERENCES

[1] General Data Protection Regulation. Retrieved July 18, 2019 from
https://eugdpr.org

[2] Monsoon Power Monitor. Retrieved July 18, 2019 from https://www.
msoon.com/online-store

[3] ONNX Open Source Model Zoo. Retrieved July 18, 2019 from https:
//github.com/onnx/models

[4] The Microsoft Cognitive Toolkit. Retrieved July 18, 2019 from https:
//www.microsoft.com/en-us/cognitive-toolkit

[5] TP-Link AC1900. Retrieved July 18, 2019 from https://www.tp-
link.com/us/products/details/cat-9_Archer-C9.html

[6] Protocol Buffers. Retrieved July 18, 2019 from http://code.google.com/
apis/protocolbuffers/

[7] ARM Security Technology: Building a Secure System us-
ing TrustZone® Technology. http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf

[8] xxHash. Retrieved July 18, 2019 from https://cyan4973.github.io/
xxHash/

[9] Intel Software Guard Extensions (Intel SGX). Retrieved July 18, 2019
from https://software.intel.com/en-us/sgx

[10] Intel Software Guard Extensions (Intel SGX) SDK. Retrieved July 18,
2019 from https://software.intel.com/en-us/sgx-sdk

[11] Caffe Model Zoo. Retrieved July 18, 2019 from http://caffe.
berkeleyvision.org/model_zoo.html

[12] OpenBLAS. Retrieved July 18, 2019 from https://www.openblas.net/
[13] Keystone Enclave: An Open-Source Secure Enclave for RISC-V. Re-

trieved July 18, 2019 from https://docs.keystone-enclave.org/en/latest/
[14] TensorFlow: An open source machine learning framework for every-

one. Retrieved July 18, 2019 from https://www.tensorflow.org/
[15] Facebook Security Breach Exposes Accounts of 50 Million Users.

Retrieved July 18, 2019 from https://www.nytimes.com/2018/09/28/
technology/facebook-hack-data-breach.html

[16] Google Cloud TPU. Retrieved July 18, 2019 from https://cloud.google.
com/tpu

[17] Huawei Kirin 970 - HiSilicon. Retrieved July 18, 2019 from https:
//en.wikichip.org/wiki/hisilicon/kirin/970

[18] Microsoft Azure Cognitive Services. Retrieved July 18, 2019 from
https://azure.microsoft.com/en-us/services/cognitive-services/

[19] Dakshi Agrawal and Charu C. Aggarwal. 2001. On the Design and
Quantification of Privacy Preserving Data Mining Algorithms. In Pro-
ceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS ’01). ACM, New York, NY,
USA, 247–255. https://doi.org/10.1145/375551.375602

[20] Hany Hassan amd Anthony Aue, Chang Chen, Vishal Chowdhary,
Jonathan Clark, Christian Federmann, Marcin Junczys-Dowmunt Xue-
dong Huang, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian
Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu,
Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving Human Parity on Automatic Chinese to Eng-
lish News Translation. (March 2018). https://www.microsoft.com/en-
us/research/uploads/prod/2018/03/final-achieving-human.pdf

[21] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, Berkeley, CA, USA, 689–703. http://dl.acm.org/
citation.cfm?id=3026877.3026930

[22] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand
Exposure: SGX Cache Attacks Are Practical. CoRR abs/1702.07521
(2017). arXiv:1702.07521 http://arxiv.org/abs/1702.07521

[23] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High Perfor-
mance Convolutional Neural Networks for Document Processing. In
Tenth International Workshop on Frontiers in Handwriting Recognition,
Guy Lorette (Ed.). Université de Rennes 1, Suvisoft, La Baule (France).
https://hal.inria.fr/inria-00112631

[24] Minsik Cho and Daniel Brand. 2017. MEC: Memory-efficient Convolu-
tion for Deep Neural Network. In Proceedings of the 34th International
Conference on Machine Learning (ICML ’17), Vol. 70. PMLR, Sydney,
NSW, Australia, 815–824. http://proceedings.mlr.press/v70/cho17a.
html

[25] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptology ePrint Archive (2016), 86. http://eprint.iacr.org/2016/086

[26] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. 2016. Sanc-
tum: Minimal Hardware Extensions for Strong Software Isolation. In
25th USENIX Security Symposium (USENIX Security ’16). USENIX As-
sociation, Austin, TX, 857–874. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/costan

[27] Tom Woller David Kaplan, Jeremy Powell. AMD memory encryp-
tion. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

[28] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying
Neural Networks to Encrypted Data with High Throughput and Accu-
racy. In Proceedings of The 33rd International Conference on Machine
Learning (ICML ’16), Vol. 48. PMLR, New York, NY, USA, 201–210.
http://proceedings.mlr.press/v48/gilad-bachrach16.html

[29] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. 2014.
Compressing Deep Convolutional Networks using Vector Quantiza-
tion. CoRR abs/1412.6115 (2014). arXiv:1412.6115 http://arxiv.org/abs/
1412.6115

[30] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
2017. Cache Attacks on Intel SGX. In Proceedings of the 10th European
Workshop on Systems Security (EuroSec’17). ACM, New York, NY, USA,
Article 2, 6 pages. https://doi.org/10.1145/3065913.3065915

[31] Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Ankita Lamba,
Dimitrios Pendarakis, and Ian Molloy. 2018. Securing Input Data of
Deep Learning Inference Systems via Partitioned Enclave Execution.
CoRR abs/1807.00969 (2018). arXiv:1807.00969 http://arxiv.org/abs/
1807.00969

[32] Shay Gueron. A Memory Encryption Engine Suitable for General
Purpose Processors. Cryptology ePrint Archive, Report 2016/204.
https://eprint.iacr.org/2016/204

[33] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-
Resolution Side Channels for Untrusted Operating Systems. In 2017
USENIX Annual Technical Conference (ATC ’17). USENIX Association,
Santa Clara, CA, 299–312. https://www.usenix.org/conference/atc17/
technical-sessions/presentation/hahnel

[34] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compres-
sion: Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding. CoRR abs/1510.00149 (2015).
arXiv:1510.00149 http://arxiv.org/abs/1510.00149

[35] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learn-
ing both Weights and Connections for Efficient Neural Network.
In Advances in Neural Information Processing Systems 28 (NIPS
’15). Curran Associates, Inc., Montreal, Quebec, Canada, 1135–
1143. http://papers.nips.cc/paper/5784-learning-both-weights-and-
connections-for-efficient-neural-network

https://eugdpr.org
https://www.msoon.com/online-store
https://www.msoon.com/online-store
https://github.com/onnx/models
https://github.com/onnx/models
https://www.microsoft.com/en-us/cognitive-toolkit
https://www.microsoft.com/en-us/cognitive-toolkit
https://www.tp-link.com/us/products/details/cat-9_Archer-C9.html
https://www.tp-link.com/us/products/details/cat-9_Archer-C9.html
http://code.google.com/apis/protocolbuffers/
http://code.google.com/apis/protocolbuffers/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://cyan4973.github.io/xxHash/
https://cyan4973.github.io/xxHash/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx-sdk
http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html
https://www.openblas.net/
https://docs.keystone-enclave.org/en/latest/
https://www.tensorflow.org/
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://cloud.google.com/tpu
https://cloud.google.com/tpu
https://en.wikichip.org/wiki/hisilicon/kirin/970
https://en.wikichip.org/wiki/hisilicon/kirin/970
https://azure.microsoft.com/en-us/services/cognitive-services/
https://doi.org/10.1145/375551.375602
https://www.microsoft.com/en-us/research/uploads/prod/2018/03/final-achieving-human.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/03/final-achieving-human.pdf
http://dl.acm.org/citation.cfm?id=3026877.3026930
http://dl.acm.org/citation.cfm?id=3026877.3026930
http://arxiv.org/abs/1702.07521
http://arxiv.org/abs/1702.07521
https://hal.inria.fr/inria-00112631
http://proceedings.mlr.press/v70/cho17a.html
http://proceedings.mlr.press/v70/cho17a.html
http://eprint.iacr.org/2016/086
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
https://doi.org/10.1145/3065913.3065915
http://arxiv.org/abs/1807.00969
http://arxiv.org/abs/1807.00969
http://arxiv.org/abs/1807.00969
https://eprint.iacr.org/2016/204
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’16). Las Vegas, NV,
USA, 770–778. https://doi.org/10.1109/CVPR.2016.90

[37] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017.
CryptoDL: Deep Neural Networks over Encrypted Data. CoRR
abs/1711.05189 (2017). arXiv:1711.05189 http://arxiv.org/abs/1711.
05189

[38] Tyler Highlander and Andres Rodriguez. 2016. Very Efficient Training
of Convolutional Neural Networks using Fast Fourier Transform and
Overlap-and-Add. CoRR abs/1601.06815 (2016). arXiv:1601.06815
http://arxiv.org/abs/1601.06815

[39] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. CoRR abs/1704.04861 (2017). arXiv:1704.04861
http://arxiv.org/abs/1704.04861

[40] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’18). Salt Lake City, UT, USA, 7132–7141. https://doi.org/10.
1109/CVPR.2018.00745

[41] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and
Emmett Witchel. 2018. Chiron: Privacy-preserving Machine Learning
as a Service. CoRR abs/1803.05961 (2018). arXiv:1803.05961 http:
//arxiv.org/abs/1803.05961

[42] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. 2016. Ryoan: A Distributed Sandbox for Untrusted Compu-
tation on Secret Data. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI’16). USENIX
Association, Berkeley, CA, USA, 533–549. http://dl.acm.org/citation.
cfm?id=3026877.3026919

[43] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon:
Mobile GPU-based Deep Learning Framework for Continuous Vision
Applications. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys ’17). ACM, New
York, NY, USA, 82–95. https://doi.org/10.1145/3081333.3081360

[44] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <1MB model size. CoRR
abs/1602.07360 (2016). arXiv:1602.07360 http://arxiv.org/abs/1602.
07360

[45] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speed-
ing up Convolutional Neural Networks with Low Rank Expansions.
In Proceedings of the British Machine Vision Conference (BMVC ’14).
BMVA Press, Nottingham, UK. https://doi.org/10.5244/C.28.88

[46] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang. 2018.
Model-Reuse Attacks on Deep Learning Systems. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’18). ACM, New York, NY, USA, 349–363. https://doi.
org/10.1145/3243734.3243757

[47] Yangqing Jia. 2014. Learning Semantic Image Representations at a Large
Scale. Ph.D. Dissertation. University of California, Berkeley, USA.
http://www.escholarship.org/uc/item/64c2v6sn

[48] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
Caffe: Convolutional Architecture for Fast Feature Embedding. In
Proceedings of the 22Nd ACM International Conference on Multimedia
(MM ’14). ACM, New York, NY, USA, 675–678. https://doi.org/10.1145/
2647868.2654889

[49] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang,
and Dongjun Shin. 2015. Compression of Deep Convolutional Neu-
ral Networks for Fast and Low Power Mobile Applications. CoRR

abs/1511.06530 (2015). arXiv:1511.06530 http://arxiv.org/abs/1511.
06530

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Im-
ageNet Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems 25 (NIPS
’12). Curran Associates, Inc., Lake Tahoe, Nevada, USA, 1106–
1114. http://papers.nips.cc/paper/4824-imagenet-classification-with-
deep-convolutional-neural-networks

[51] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A
Software Accelerator for Low-power Deep Learning Inference on Mo-
bile Devices. In Proceedings of the 15th International Conference on
Information Processing in Sensor Networks (IPSN ’16). IEEE Press, Piscat-
away, NJ, USA, Article 23, 12 pages. http://dl.acm.org/citation.cfm?
id=2959355.2959378

[52] Andrew Lavin and Scott Gray. 2016. Fast Algorithms for Convolutional
Neural Networks. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’16). Las Vegas, NV, USA, 4013–4021. https:
//doi.org/10.1109/CVPR.2016.435

[53] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. 2005.
Incognito: Efficient Full-domain K-anonymity. In Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’05). ACM, New York, NY, USA, 49–60. https://doi.org/10.
1145/1066157.1066164

[54] Meng Li, Liangzhen Lai, Naveen Suda, Vikas Chandra, and David Z.
Pan. 2017. PrivyNet: A Flexible Framework for Privacy-Preserving
Deep Neural Network Training with A Fine-Grained Privacy Control.
CoRR abs/1709.06161 (2017). arXiv:1709.06161 http://arxiv.org/abs/
1709.06161

[55] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, DavidM.
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE:
Rollback Protection for Trusted Execution. In 26th USENIX Security
Symposium (USENIX Security ’17). USENIX Association, Vancouver,
BC, 1289–1306. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/matetic

[56] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebas-
tian Nowozin, Kapil Vaswani, andManuel Costa. 2016. ObliviousMulti-
Party Machine Learning on Trusted Processors. In 25th USENIX Secu-
rity Symposium (USENIX Security ’16). USENIX Association, Austin,
TX, 619–636. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/ohrimenko

[57] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. 2018. Varys: Protecting SGX Enclaves from Practical
Side-Channel Attacks. In 2018 USENIX Annual Technical Conference
(ATC ’18). USENIX Association, Boston, MA, 227–240. https://www.
usenix.org/conference/atc18/presentation/oleksenko

[58] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learn-
ing and Transferring Mid-level Image Representations Using Convolu-
tional Neural Networks. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’14). Columbus, OH, USA, 1717–1724.
https://doi.org/10.1109/CVPR.2014.222

[59] Seyed Ali Ossia, Ali Shahin Shamsabadi, Ali Taheri, Kleomenis Katevas,
Hamid R. Rabiee, Nicholas D. Lane, and Hamed Haddadi. 2017. Privacy-
Preserving Deep Inference for Rich User Data on The Cloud. CoRR
abs/1710.01727 (2017). arXiv:1710.01727 http://arxiv.org/abs/1710.
01727

[60] Seyed Ali Ossia, Ali Shahin Shamsabadi, Ali Taheri, Hamid R. Ra-
biee, Nicholas D. Lane, and Hamed Haddadi. 2017. A Hybrid Deep
Learning Architecture for Privacy-Preserving Mobile Analytics. CoRR
abs/1703.02952 (2017). arXiv:1703.02952 http://arxiv.org/abs/1703.
02952

https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1601.06815
http://arxiv.org/abs/1601.06815
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
http://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1803.05961
http://dl.acm.org/citation.cfm?id=3026877.3026919
http://dl.acm.org/citation.cfm?id=3026877.3026919
https://doi.org/10.1145/3081333.3081360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://doi.org/10.5244/C.28.88
https://doi.org/10.1145/3243734.3243757
https://doi.org/10.1145/3243734.3243757
http://www.escholarship.org/uc/item/64c2v6sn
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1511.06530
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://dl.acm.org/citation.cfm?id=2959355.2959378
http://dl.acm.org/citation.cfm?id=2959355.2959378
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1145/1066157.1066164
https://doi.org/10.1145/1066157.1066164
http://arxiv.org/abs/1709.06161
http://arxiv.org/abs/1709.06161
http://arxiv.org/abs/1709.06161
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenk o
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenk o
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://doi.org/10.1109/CVPR.2014.222
http://arxiv.org/abs/1710.01727
http://arxiv.org/abs/1710.01727
http://arxiv.org/abs/1710.01727
http://arxiv.org/abs/1703.02952
http://arxiv.org/abs/1703.02952
http://arxiv.org/abs/1703.02952

[61] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ra-
machandran Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek
Modi, and Saikrishna Badrinarayanan. 2016. Big Data Analytics
over Encrypted Datasets with Seabed. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementa-
tion (OSDI’16). USENIX Association, Berkeley, CA, USA, 587–602.
http://dl.acm.org/citation.cfm?id=3026877.3026922

[62] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. 2016. XNOR-Net: ImageNet Classification Using Binary Con-
volutional Neural Networks. In Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands. Springer Interna-
tional Publishing, Cham, 525–542. https://doi.org/10.1007/978-3-319-
46493-0_32

[63] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. 2016. You Only Look Once: Unified, Real-Time Object Detec-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR ’16). Las Vegas, NV, USA, 779–788. https://doi.org/10.1109/
CVPR.2016.91

[64] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of
Computer Vision 115, 3 (2015), 211–252. https://doi.org/10.1007/s11263-
015-0816-y

[65] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmogi-
nov, and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals
and Linear Bottlenecks. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’18). Salt Lake City, UT, USA, 4510–
4520. http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_
MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html

[66] Boris Schäling. 2011. The boost C++ libraries. Boris Schäling.
[67] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-

volutional Networks for Large-Scale Image Recognition. CoRR
abs/1409.1556 (2014). arXiv:1409.1556 http://arxiv.org/abs/1409.1556

[68] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. 2015. Going deeper with convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR ’15).
Boston, MA, USA, 1–9. https://doi.org/10.1109/CVPR.2015.7298594

[69] Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan E. 2015. Con-
volutional neural networks with low-rank regularization. CoRR
abs/1511.06067 (2015). arXiv:1511.06067 http://arxiv.org/abs/1511.
06067

[70] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and
Ramachandran Ramjee. 2018. Privado: Practical and Secure DNN
Inference. CoRR abs/1810.00602 (2018). arXiv:1810.00602 http://arxiv.
org/abs/1810.00602

[71] Florian Tramèr and Dan Boneh. 2018. Slalom: Fast, Verifiable and
Private Execution of Neural Networks in Trusted Hardware. CoRR
abs/1806.03287 (2018). arXiv:1806.03287 http://arxiv.org/abs/1806.
03287

[72] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton:
Trusted Execution Environments on GPUs. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’18). USENIX Association, Berkeley, CA, USA, 681–696. http:
//dl.acm.org/citation.cfm?id=3291168.3291219

[73] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu,
Qing Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-
Performance Computing on the Intel® Xeon Phi™. Springer, 167–188.

[74] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013.
AUGEM: Automatically Generate High Performance Dense Linear
Algebra Kernels on x86 CPUs. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and
Analysis (SC ’13). ACM, New York, NY, USA, Article 25, 12 pages.
https://doi.org/10.1145/2503210.2503219

[75] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017.
Leaky Cauldron on the Dark Land: Understanding Memory Side-
Channel Hazards in SGX. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’17). ACM,New
York, NY, USA, 2421–2434. https://doi.org/10.1145/3133956.3134038

[76] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. Sgx-
perf: A Performance Analysis Tool for Intel SGX Enclaves. In Proceed-
ings of the 19th International Middleware Conference (Middleware ’18).
ACM, New York, NY, USA, 201–213. https://doi.org/10.1145/3274808.
3274824

[77] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
2016. Quantized Convolutional Neural Networks for Mobile Devices.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’16). Las Vegas, NV, USA, 4820–4828. https://doi.org/10.1109/
CVPR.2016.521

[78] Wayne Xiong, Lingfeng Wu, Fil Alleva, Jasha Droppo, Xuedong
Huang, and Andreas Stolcke. 2017. The Microsoft 2017 Con-
versational Speech Recognition System [Technical Report]. (Au-
gust 2017). https://www.microsoft.com/en-us/research/publication/
microsoft-2017-conversational-speech-recognition-system/

[79] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu,
and Xuanzhe Liu. 2019. A First Look at Deep Learning Apps on Smart-
phones. In The World Wide Web Conference (WWW ’19). ACM, New
York, NY, USA, 2125–2136. https://doi.org/10.1145/3308558.3313591

[80] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xu-
anzhe Liu. 2018. DeepCache: Principled Cache for Mobile Deep Vision.
In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking (MobiCom ’18). ACM, New York, NY, USA,
129–144. https://doi.org/10.1145/3241539.3241563

[81] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Operating
Systems. In 2015 IEEE Symposium on Security and Privacy (SP ’15). San
Jose, CA, USA, 640–656. https://doi.org/10.1109/SP.2015.45

[82] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How
transferable are features in deep neural networks?. In Advances in Neu-
ral Information Processing Systems 27 (NIPS ’14). Curran Associates, Inc.,
Montreal, Quebec, Canada, 3320–3328. http://papers.nips.cc/paper/
5347-how-transferable-are-features-in-deep-neural-networks

[83] Xiao Zeng, Kai Cao, and Mi Zhang. 2017. MobileDeepPill: A Small-
Footprint Mobile Deep Learning System for Recognizing Uncon-
strained Pill Images. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’17).
ACM, New York, NY, USA, 56–67. https://doi.org/10.1145/3081333.
3081336

[84] Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. 2018. High Perfor-
mance Zero-Memory Overhead Direct Convolutions. In Proceedings
of the 35th International Conference on Machine Learning (ICML ’18),
Vol. 80. PMLR, Stockholmsmässan, Stockholm Sweden, 5776–5785.
http://proceedings.mlr.press/v80/zhang18d.html

http://dl.acm.org/citation.cfm?id=3026877.3026922
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1511.06067
http://arxiv.org/abs/1511.06067
http://arxiv.org/abs/1511.06067
http://arxiv.org/abs/1810.00602
http://arxiv.org/abs/1810.00602
http://arxiv.org/abs/1810.00602
http://arxiv.org/abs/1806.03287
http://arxiv.org/abs/1806.03287
http://arxiv.org/abs/1806.03287
http://dl.acm.org/citation.cfm?id=3291168.3291219
http://dl.acm.org/citation.cfm?id=3291168.3291219
https://doi.org/10.1145/2503210.2503219
https://doi.org/10.1145/3133956.3134038
https://doi.org/10.1145/3274808.3274824
https://doi.org/10.1145/3274808.3274824
https://doi.org/10.1109/CVPR.2016.521
https://doi.org/10.1109/CVPR.2016.521
https://www.microsoft.com/en-us/research/publication/microsoft-2017-conversational-speech-recognition-system/
https://www.microsoft.com/en-us/research/publication/microsoft-2017-conversational-speech-recognition-system/
https://doi.org/10.1145/3308558.3313591
https://doi.org/10.1145/3241539.3241563
https://doi.org/10.1109/SP.2015.45
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
https://doi.org/10.1145/3081333.3081336
https://doi.org/10.1145/3081333.3081336
http://proceedings.mlr.press/v80/zhang18d.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Demand of Model-inference Offloading
	2.2 Intel SGX
	2.3 Deep-learning Inference in Enclave

	3 Privacy and Threat Model
	4 Occlumency Design
	4.1 Design Goals
	4.2 System Overview

	5 On-demand Weights Loading and Integrity Checking
	5.1 On-demand Weights Loading
	5.2 Model Integrity Checking

	6 Memory-efficient Inference
	6.1 Memory-efficient Feature Map Allocation
	6.2 Partitioned Convolution

	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Inference Latency
	8.3 Enclave Memory Usage
	8.4 Comparison with On-device Inference

	9 Discussion
	10 Related Work
	11 Conclusion
	12 Acknowledgements
	References

