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ABSTRACT

LoRa, which is considered as an appealing wireless technique

for Low-Power Wide-Area Networks (LPWANs), has found wide

applications in fields such as smart cities, intelligent agriculture.

Despite its popularity, there exists a growing concern about se-

cure communications mainly due to the free frequency band and

minimalist design specified in LoRa communications. For exam-

ple, an attacker can forge messages to launch spoofing attack. To

mitigate the threat, an authentication mechanism is needed. In

this paper, we propose a lightweight node authentication scheme

named SLoRa for LoRa networks by leveraging two physical layer

features–Carrier Frequency Offset (CFO) and spatial-temporal link

signature. In particular, we propose a novel CFO compensation

algorithm, and identify slight CFO variations by adopting linear

fitting for received upchirps to mitigate the noise’s randomness on

fine-grained CFO estimation. Besides, we can obtain fine-grained

link signatures without the conventional de-convolution opera-

tion based on the theoretical analysis. Then, we show how these

two physical-layer features complement each other to conquer the

drift challenge brought by weather and environment variations.

Combining these two features, SLoRa can distinguish whether the

received signal is conveyed from a legitimate LoRa node or not.

Experiments covering indoor and outdoor scenarios are conducted

to demonstrate a high accuracy for node authentication in SLoRa,

which is around 97% indoors and 90% outdoors.
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1 INTRODUCTION

As an important wireless technique designed for LPWANs, Long

Range (LoRa) communications have gained considerable attentions

from both academia and industry due to its low-power and low-cost

[11, 13, 25]. Yet, the other side of the coin is that LoRa nodes bear

the risk of attacks, which is of great concern to the reliability of

LoRa networks.

In convention, LoRa networks are susceptible to security attacks,

and the reason is two-fold. First, LoRa communications use the

unlicensed frequency band and simple protocol specifications, ren-

dering itself vulnerable to active attacks such as spoofing attacks

and Denial-of-Service (DoS) attacks. Secondly, compared to tradi-

tional wireless techniques (e.g., WiFi, ZigBee), LoRa packets usually

have a long duration. The wide transmission window provides

sufficient time for attackers to launch spoofing and DoS attacks

[3, 33].

The security performance of LoRa networks can be enhanced

by adopting the symmetric-key cryptography mechanism in MAC

layer [1]. Meanwhile, low-power and low-cost, which are the design

goals of LoRa networks, make the implementation of complicated

encryption algorithms infeasible. Then, an attacker may counterfeit

legitimate nodes by compromising the encryption protocol. It is non-

trivial to defend against active attacks by only leveraging existing

hardware and infrastructure.

To comply with the design goal of LoRa protocol, this paper

aims to improve LoRa’s security by integrating the physical-layer

authentication into LoRa communications, which extracts fine-

grained CFO and spatial-temporal link signatures as the unique

signature of legitimate LoRa nodes. Specifically, we exploit fine-

grained CFOs which are based on hardware imperfections to distin-

guish LoRa nodes, and use proposed link signatures that highly rely

on endpoints’ positions of wireless links to distinguish locations of

these LoRa nodes, and thus provide two-dimensional authentica-

tion. Launching active attacks such as spoofing attack or DoS attack,

which should simultaneously eliminate the two types of differences

between the attacker and legitimate nodes through manipulation,

becomes extremely difficult.

We identify several practical challenges to capture CFO and tem-

poral link signatures in LoRa networks. First, LoRa specifies its

operation at a much narrower bandwidth such as 250 KHz within

a wider coverage compared with traditional wireless techniques

(e.g., WiFi). Fine-grained CFO extraction becomes much more chal-

lenging in the presence of noise and other interference. Secondly,

the temporal link signature, which represents the physical layer

characteristic of the radio channel between a transmitter and a

receiver, is hard to extract in complex environments. Finally, CFO

drift occurs due to temperature change and hardware aging, and
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the link signature undergoes temporal variations induced by envi-

ronmental dynamics. Stable CFO and link signature extraction is a

particularly involved challenge.

To address above challenges, we provide node authentication

and improve the security performance of LoRa communications. At

the heart of our approach is a strategy that exploits hardware imper-

fections of low-cost components in LoRa radios, where signals sent

by such hardware produce offset in time, frequency, and phase at

the receiver (e.g., gateway). The hardware offset can be manifested

as distinct aggregate frequency shift Δf , and the received upchirp

signal can be represented as e j2πΔf tC after downconverting, rather

than the standard upchirp C . Then, we can observe an FFT peak

at Δf . In conventional LoRa demodulation process, the CFO Δf is

coarsely estimated as an integral multiple of a Fourier transform

bin. Compared to the coarse-grained CFO estimation, the peak lo-

cation actually includes an arbitrary fraction of a Fourier bin since

CFO is a physical phenomenon and then not need to be an integral

multiple of a Fourier bin. We employ fine-grained CFOs composed

of both fractional and integral parts as the node signature to dis-

tinguish nodes in LoRa networks. Specially, we propose a novel

CFO compensation algorithm to measure Δf . However, there exist
subtle fluctuations in estimated CFOs due to the noise effect in ac-

tual implementations. We then investigate the relationship between

estimated CFOs and noises by employing linear fitting for received

upchirps, and transform this relationship into a new relationship

between CFOs and pairs of slope gradient and truncation rate of

linear lines. According to pairs of slope gradient and truncation

rate, we apply the Support Vector Machine (SVM) model to identify

CFOs even with slight fluctuations, thus achieving fine-grained

CFO estimation.

Besides the CFO estimation, we define the spatial-temporal link

signature at a high level, which highly depends on endpoints’ po-

sitions of wireless links. Similarly, we propose a lightweight link

signature measurement methodology for the spatial-temporal link

signature, and it can act as a sensitive feature for distinguishing

LoRa nodes at different positions. To extract fine-grained link signa-

tures, we first investigate the relationship between CFOs and link

signatures, and find that fine-grained CFO estimation is conducive

to the sensitive link signature extraction. Existing research work on

the link signature estimation relies on the computation-intensive

and complicated de-convolution which introduces inaccurate esti-

mation simultaneously [24, 29]. To break the routine, we propose a

theoretical model leveraging the unique demodulation mechanism

of LoRa communications to achieve the fine-grained link signature

estimation without de-convolution and verify that the link signa-

ture is highly related to the channel impulse response. Then, it can

be used to indicate the physical layer characteristic of the radio

channel.

Finally, we combine extracted CFOs and link signatures to achieve

a robust node authentication and adapt to the drift of these two

features induced by temperature variations and environment dy-

namics.

Research work on device authentication and security enhance-

ment in wireless networks requires extra RFID tag [20, 35], or

receiver and antenna deployment [12]. These schemes are costly

and operating-inefficient for large-scale LoRa networks. Conse-

quently, we propose SLoRa, a lightweight system based on passive

radio analysis. We implement SLoRa on a testbed of conventional

LoRa radios operating at 868 MHz. We employ an USRP N210 to

emulate the LoRa gateway and utilize a commercial LoRa node as

the transmitter, while using another ten LoRa nodes at different

locations to launch attacks. The commodity client transmits data

to the gateway in an office building and outdoor environments.

We compare SLoRa’s performance with individual CFO and link

signature based schemes since existing research work using CFOs

or link signatures have focused on node authentication in WiFi

networks. Experiments conducted in both indoor and outdoor sce-

narios reveal that the authentication accuracy for legitimate nodes

is about 97% indoors and 90% outdoors, while maintaining a low

false alarm rate and small delay of around 100 ms.

The contributions can be summarized as follows.

• This paper presents a novel physical layer authentication

method named SLoRa which exploits two physical layer fea-

tures in wireless communications–CFOs and link signatures,

to improve the security performance in LoRa networks.

• To extract fine-grained CFOs, we present a CFO compensa-

tion algorithm and then employ the SVM model to identify

the subtly fluctuated CFOs in the presence of noise by lever-

aging linear fitting for received upchirps. Meanwhile, we

define the spatial-temporal link signature and propose a

lightweight measurement method. Specifically, we combine

the demodulation mechanism with a proposed theoretical

model to extract fine-grained link signatures without de-

convolution.

• Besides the fine-grained CFO and link signature extraction,

we show how to combine these two features to adapt to

the drift challenge induced by dynamic temperature and

environments.

• We have implemented a prototype of SLoRa, in which LoRa

nodes act as the transmitter and an USRP N210 act as the

LoRa gateway.

2 MOTIVATION

Coupled with the recent world-wide deployment [10, 32, 40], the

security of LoRa networks has gradually become a major hurdle.

However, it is non-trivial to secure large-scale LoRa networks due to

the resource-constraints in LoRa (e.g., low power and low-cost hard-

ware). Although the symmetric-key cryptography mechanism can

be used to guarantee security, the wide transmission window, free

operated frequency band, and public standard make LoRa networks

susceptible to malicious attacks [6]. The attacker can imperson-

ate a legitimate node to convey deceptive packets to the gateway.

Thus, it deserves attentions to further strengthen the security in

LoRa networks. Accordingly, a lightweight security mechanism is

desirable.

From another perspective, low-cost crystal oscillators embedded

in LoRa nodes have an inherent mismatch with their nominal fre-

quency value. Therefore, the down-conversion is performed with

a different frequency than the up-conversion, which results in a

CFO of the baseband signals. We have collected the received sig-

nals from four LoRa nodes which exhibit similar CFO patterns. As
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shown in Fig. 1(a), we cannot utilize the coarse-grained CFOs based

on the conventional LoRa demodulation to distinguish node one

from node four, as well as for nodes two and three when setting

SF as 8, since they are located at the same bin. In LoRa, one bin

covers the frequency bandwidth equaling to BW
2SF

and BW denotes

the whole bandwidth. Then, if we perform a Fourier transform

over a wider window when setting SF as the highest one–12, we

can observe that CFOs of these four nodes differ from each other,

respectively corresponding to 0, 4, 6, and 7 FFT bins. Consequently,

these fine-grained CFOs can be exploited to distinguish large-scale

LoRa nodes, yet lacking wide applicability for all SFs .
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Figure 1: The CFO estimation based on the conventional

LoRa demodulator when setting the spreading factor as 8

and 12, respectively.

Meanwhile, the LoRa modulation technique is relatively imper-

vious to the initial frequency offset between the transmitter and

receiver, which indicates that a high frequency offset tolerance up

to dozens or even hundreds of KHz can be withstood while main-

taining the link reliability [27]. If a fine-grained CFO between one

LoRa node and gateway can be extracted, we can utilize this unique

CFO as the signature for distinguishing large-scale LoRa nodes. The

reason is that although crystal oscillators are constructed using the

same manufacturing and packaging processes, no two are identical.

In addition to CFOs, we seek to improve the node distinguishabil-

ity using the spatial-temporal link signature, which highly depends

on the transmitter’s location. Research work of [24, 34] has veri-

fied that the link signature in WiFi networks demonstrates a high

diversity when endpoints locate at different positions. In adversary

settings, an attacker cannot measure the legitimate link between

legitimate nodes and the gateway, unless it is located at exactly the

same location as the gateway. Even if an attacker can measure a link

signature, it can hardly present the same link signature at the gate-

way unless it is at the same location as the legitimate node. Hence,

the unique link signature can be employed as another sensitive sig-

nature for distinguishing LoRa nodes with a large-scale deployment.

The coarse link signature can be extracted highly relying on WiFi’s

modulation mode (i.e., OFDM) and incurring certain computation

overhead simultaneously [24]. However, it is hard to achieve this

due to the unique modulation mode (i.e., CSS) in physical layer of

LoRa communications. A more accurate and lightweight scheme

for the link signature extraction is required to build a lightweight

system for node authentication in LoRa networks.

3 RELATEDWORK

To improve the security of wireless networks, cryptographic

mechanisms have been proposed for WiFi [2], Zigbee [9], and RFID

[15, 20, 26].

Research work in [8] uses the received signal strength (RSS) as

the signature for node authentication in 802.11e networks. However,

RSS may undergo variations and becomes unreliable. Furthermore,

much research work employs link signatures as the signature of

end devices to defend against active attacks [18, 19, 41]. Wang et

al. [36] propose to extract the peculiar propagation characteristics

of creeping waves to discern on-body devices for authentication.

The authors of [28] perform a man-in-the-middle attack and inject

control commands into WiFi links leveraging the security vulnera-

bilities. To improve the security of WiFi networks, xiong et al. [37]

propose a signal processing algorithm named SecureArray by lever-

aging multi-antenna access point, in order to construct the direction

profiles at which a client’s signals arrive. It highly depends on the

AoA information to construct highly sensitive signatures. However,

these schemes are not suitable for LoRa communications. First,

LoRa communications can only provide little channel information

in the physical layer compared to WiFi. Hence, it is impossible to

obtain the AoA information in LoRa communications. Secondly, the

link signature estimation requires complicated processing (e.g., IFFT

operations), which challenges the lightweight node authentication

design.

Meanwhile, design enhancements are proposed to improve the

security performance of Zigbee [22, 23]. The authors of [5] intro-

duce a robust and fast chaotic encryption algorithm since chaotic

functions can be used to construct high speed and strong stream

ciphers.

In addition, the security of RFID communications has received

widespread attentions due to the simplified design [17, 31]. The au-

thors of [35] propose a physical layer authentication protocol which

is resilient to attacks like tag counterfeiting. It mainly leverages the

features of inductive coupling of two tags and signal randomization

to secure the RFID communications.

There exists a weak security mechanism with free band and

public standard in LoRa communications [4, 30]. The authors of [3]

explore the potential security vulnerabilities, and they analyze the

LoRa network stack and present several kinds of attacks leveraging

commercial-off-the-shelf hardware. Analysis demonstrates that

LoRa communications are prone to multiple security attacks.

To defend against these attacks, the authors of [38] propose a

key establishment protocol, which employs a number of signal

processing techniques to significantly improve the key generation

rate. Recently, Choir proposed in [11] aims to resolve the collision

problem based on relative CFOs corresponding to different LoRa

nodes. However, it becomes more challenging for SLoRa since it

should extract the absolute CFOs to serve as the signature of LoRa

nodes.

The research work most related to SLoRa is an CFO based secu-

rity scheme in [14]. Both of them leverage CFOs to serve for node

authentication, yet differing in the CFO estimation algorithms. The

authors of [14] extract fine-grained CFOs by applying the linear

regression and least squares methods to fit the time-domain LoRa

signals. Differently, a novel frequency-domain CFO estimation is
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proposed in SLoRa leveraging the demodulation mechanism. Mean-

while, compared to [14] based on CFO, SLoRa combines both CFO

and link signature to improve the security performance of LoRa

communications.

4 SLORA IN A NUTSHELL

In this section, we introduce the threat model in LoRa networks,

followed by the system architecture of SLoRa.

4.1 Threat Model

In LoRa networks, the most common scenario is the data up-

loading from nodes to the gateway. In a typical attack case, the

legitimate node transmits the sensed information to the gateway.

Immediately, at the node side, two time windows are set to receive

an acknowledgement from the gateway. During this process, a pow-

erful attacker who has a prior knowledge of the LoRa protocol and

the legitimate node (e.g., the coding strategy, carrier frequency and

transmission power) can leverage an omnidirectional antenna to

detect the interaction [7, 39]. Then, it utilizes a directional antenna

to inject fake data (e.g., the DoS command or spoofing data). If the

gateway accepts the spoofed command, it results in an rejection or

unauthorized access to legitimate nodes.

In this work, we assume the adversary is able to launch various

active attacks against the integrity (e.g., false data injection or

replay attacks) and availability (e.g., DoS attacks) of LoRa networks.

Although LoRa employs symmetric-key cryptographic mechanisms,

such attacks are still possible if the encryption key is leaked.

4.2 System Overview

With SLoRa, we can detect above active attacks, and Fig. 2 de-

scribes its framework, which mainly consists of the offline feature

extraction phase and online detection phase. The offline phase in

SLoRa is responsible for collecting LoRa signals from legitimate

nodes. Then, it extracts fine-grained CFOs and link signatures re-

spectively according to two designed feature extraction algorithms,

and they are fed into the SVMmodel for training. When a new LoRa

node joins the LoRa network, we collect LoRa signals transmitted

from this node and extract the physical layer features.

Figure 2: The framework of SLoRa.

The online detection phase of SLoRa first extracts CFO and link

signature sent from an anonymous LoRa node. These unique fea-

tures are fed into the SVM model, and then it compares the online

collected features with the features learnt from the offline phase.

According to the similarity comparison, the SVM model determines

whether the derived node is within the set of legitimate nodes.

SLoRa identifies that the received signal is conveyed from a legiti-

mate node. Otherwise, it comes from an attacker and an alarm is

generated. For benign cases, the newly obtained features are fed

into the ground-truth collection module in the offline phase, while

the oldest feature pair is discarded for constant memory usage and

feature update.

5 SLORA DESIGN

This section presents technical details about the lightweight node

authentication system through passive radio analysis, including

the fine-grained CFO extraction, spatial-temporal link signature

measurement, and combination of CFO and link signatures.

5.1 CFO Extraction

The first signature for node authentication is CFO presented

when downconverting is executed at the receiver, since crystal

oscillators in different LoRa nodes produce different carrier fre-

quencies. However, it is challenging to extract fine-grained CFOs in

actual environments. Naturally, there exist three factors affecting

the carrier frequency of crystal oscillators, including the initial

error, the noise effects, the temperature drift, and the aging drift.

In this subsection, we leverage CFOs caused by the initial error as

the node signature. Subsequently, we show how to accommodate

for the drifts induced by the temperature and ageing.

5.1.1 CFO Compensation Algorithm. In the CFO compensa-

tion algorithm, we exploit the preamble part of LoRa packets to

achieve CFO estimation. This is because we can directly read-off

the locations of peaks as CFOs when performing FFT on the multi-

plication result of received upchirps of the preamble part with the

standard downchirp. Specifically, in the ideal case, the bin index of

the FFT peak is zero. However, it actually shifts to one nearby bin

index due to CFO Δf . For example, assuming one low-cost LoRa

node conveys signals at the actual frequency fc , which is offset by

Δf from the nominal one f0. After down-converting to the base-

band, the time-domain signal can be represented as h � e j2πΔf tC ,
whereh andC represent the wireless channel response and standard

upchirp in the preamble part, respectively. After de-chirping by

multiplying with the standard downchirp C−1 and FFT execution,

we can observe an FFT peak at the frequency offset Δf .
However, this coarse-grained CFO estimation which only con-

sists of the integral FFT bin index restricts the distinguishing accu-

racy of SLoRa, especially for large-scale deployed LoRa nodes. It

should be noted that CFO is a physical phenomenon such that data

bits are loaded on integer bins in the Fourier transform, while CFOs

need not. Actually, it need not be an integer multiple of an FFT

bin, which implies that the above coarse-grained CFO estimation

loses some information pertaining to the frequency offset which is

a fraction of the FFT bin. Consequently, the distinguishing accuracy

can be dramatically improved if we can obtain the fractional part

of CFOs.

To achieve fine-grained CFO estimation including both the in-

tegral and fractional parts, we design a novel CFO compensation

algorithm. Detailed steps are illustrated as below.

In wireless communications, the received signal y(t) is the con-
volution result of the channel response h(t) and conveyed signal

s(t), which is described as
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y(t) = h(t) ⊗ s(t), (1)

where ⊗ represents the convolution operation. In LoRa communi-

cations, we can use the standard upchirp C in the preamble part to

represent s(t), which can be defined by

y(t) = h(t) ⊗ e j2π fc tC, (2)

where fc denotes the actual carrier frequency. In the demodulation

process, the LoRa receiver first down-converts the received signals

to baseband coupled with CFO, and then de-chirped by multiplying

the received upchirp with the standard downchirp C−1. The de-

chirped signal can be represented as

y(t)C−1 = h(t) ⊗ e j2πΔf t . (3)

Figure 3: The process of extracting fine-grained CFOs in

LoRa communications.

As demonstrated in Equation 3, the frequency domain repre-

sentation of the de-chirped signal (obtained via FFT), denoted as

F (yC−1), results in one FFT peak corresponding to the CFO Δf . As
mentioned above, the observed CFO is at the integer boundaries

of one FFT bin, which is denoted as Δf . Actually, the more fine-

grained CFO Δf differs from the observed one, yet close to the

observed one.

We first introduce a key observation behind the CFO compensa-

tion algorithm. As shown in Fig. 3, assuming we produce a standard

downchirp C−1 with the frequency offset of −Δf to multiply with

the received upchirp e j2πΔf tC , we can obtain the de-chirped signal

e j2π0t , and observe an FFT peak at bin index 0.

According to this observation, let us revisit the de-chirping proce-

dure, which employs a standard downchirpC−1 without frequency

offsets to multiply with the received upchirps. Like these upchirps

coupled with frequency offsets, we can artificially generate a series

of downchirps with different frequency offsets at the LoRa receiver,

which are denoted as C−1e j2π (−Δf −nF )t , C−1e j2π (−Δf −(n−1)F )t ,...,

C−1e j2π−Δf t ,...,C−1e j2π (−Δf +nF )t . Here, F indicates the frequency

resolution in CFO estimation and n denotes the CFO estimation

range. Obviously, these frequency offsets are set close to the ob-

served CFO Δf in order to achieve computation-efficient search

since Δf can be regarded as the integral part of the actual CFO.

Then, we only need to estimate the fractional part, which consider-

ably reduces the search space.

Then, wemultiply the received upchirpwith generated downchirps

with different frequency offsets one by one. During this process,

the bin index corresponding to the FFT peak should be or close to

zero when the downchirp with frequency offset −Δf appropriately

compensates for the frequency offset Δf in the received upchirp.

Put differently, when one artificially generated downchirp with the

frequency offset of −Δf can eliminate the CFO influence in the

received upchirp, the bin index at the FFT peak should be at or

close to zero. Therefore, the problem with respect to fine-grained

CFO estimation can be expressed as

Δf = − arg min
(f ∈(Δf −nF ,−Δf +nF ))

Index(F (yC−1e j2π f t )), (4)

where Index represents the function which returns the bin index

corresponding to the FFT peak, and F () denotes the FFT operation.

Naturally, we can perform FFT with a higher frequency resolution,

in order to obtain more fine-grained CFO estimation in function

Index . In the FFT operation, the frequency resolution is equal to
fs
N ,

where fs and N respectively denote the sampling rate and FFT size.

Therefore, we perform a Fourier transform over a wider window

(10× larger) by zero-padding the signal to enlarge N .

5.1.2 Noise EffectMitigation. Unfortunately, the inevitable noise

has a more severe effect on CFO estimation with a higher frequency

resolution. In actual implementations, we observe that the estimated

CFOfluctuates slightly according to the intuitive CFO compensation

strategy. The reason is that the uncertain nature of noise randomly

shifts upchirps up or down within a small frequency offset range.

Consequently, it is infeasible to extract stable and fine-grained CFOs

simultaneously. The unstable CFO estimation will incur erroneous

node authentication and then restrict the distinguishing accuracy

of SLoRa. To deal with this challenge, we attempt to investigate the

noise effect on the CFO estimation, and then build the relationship

between the noise effect and fluctuated CFOs. According to this re-

lationship, SLoRa can identify the fine-grained CFO in the presence

of noise.

Notice that upchirps in frequency domain are formed according

to the CSS modulation, implying that the frequency increment

between two adjacent samples remains constant. Therefore, we can

employ linear lines with constant slopes to describe the relationship

between these discrete samples within upchirps. As shown in Fig. 4,

we set the sample sequence as the X axis and corresponding phase

values as the Y axis. However, the received upchirps are distorted

after propagating over the wireless channels, yet their basic shapes

are maintained. To deal with the inevitable distortion, we adopt the

linear fitting method to derive the line expression for the received

upchirps of the preamble part. We can observe that these linear

lines fit well with upchirps if without noise influence. Both the

slope gradient and truncation rate of linear lines determine the

intersection with Y axis, which represents the initial frequency of

standard upchirps. Consequently, the slope gradient and truncation

rate can be leveraged to reflect the frequency offset, since the initial

frequency of standard upchirps is ideally zero, but actually shifted

by the CFO and noise.

Due to the noise, both the slope gradient and truncation rate

of linear lines undergo variations, as demonstrated in Fig. 5. On

the other hand, during the linear fitting process, the noise effect

can be averaged, which then restrains the uncertainty of noise and

amplifies the effect of CFO. Consequently, we exploit the variations

related to the slope gradient and truncation rate to indicate the

noise influence on CFO estimation.
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Linear Lines
Samples

Figure 4: The linear line is used to connect the discrete sam-

ples within a standard upchirp.

Figure 5: The received preamble part and the same preamble

part based on the linear fitting.

Experimental results with regard to the slope gradient and trun-

cation rate are shown in Fig. 6 when setting the distance between

the transmitter and receiver as 20 meters and frequency resolu-

tion F as 0.1 times of FFT transform bin. We can observe that the

fractional part of Δf slightly fluctuates from -0.1 to 0.3 bins, and

meanwhile the pair of slope gradient and truncation rate demon-

strates a distinguishable pattern corresponding to different CFOs.

More specifically, the pair of slope gradient and truncation rate

gradually shifts to right coupled with the CFO increase. Therefore,

we can identify the slight CFO variation induced by noise through

capturing the relationship between CFOs and pairs of slope gradient

and truncation rate. For example, we can obtain the proper frac-

tional part of Δf corresponding to different pairs of slope gradient

and truncation rate under different noise conditions (e.g., border

lines 1, 2, and 3 in Fig. 6).
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Figure 6: The experimental results with respect to the slope

gradient and truncation rate.
To achieve this aim, we employ the Support Vector Machine

(SVM) to achieve the classification. First, the training process is

performed for the SVM module. It mainly involves calculation of a

special matrix ωA based on the collected LoRa signals from legit-

imate node A. If the CFO derived by the SVM module (i.e., using

ωA ∗ S − b) which is fed by the pair of a received frame’s slope

gradient and truncation rate equals to the directly measured CFO,

then SLoRa regards the received signal is conveyed from the le-

gitimate node A. Otherwise, it is transmitted from an attacker. In

general, the SVM model consists of multiple groups of matrices like

ωA since LoRa networks conventionally include multiple nodes. In

order to reduce the computation overhead, we first coarsely esti-

mate the CFO of the received frame, and only choose legitimate

nodes whose CFOs are closed to the estimated one to compare with.

Consequently, based on the designed scheme, SLoRa can achieve

fine-grained CFO estimation even in the presence of noise. Then,

SLoRa can provide node authentication for large-scale LoRa net-

works. When the frequency resolution is set as 0.1 times of FFT

transform bin (e.g., about 100 Hz frequency resolution when SF
is 8 and BW is 250 KHz), SLoRa can distinguish more than 400

LoRa nodes when the frequency offset tolerance is just 20 KHz,

which is a huge step forward for node authentication compared to

traditional wireless networks (e.g., the largest number of identified

nodes is 138 reported in 802.11 networks [6]). Combined with the

link signature, SLoRa can provide a satisfactory performance for

node authentication in large-scale LoRa networks.

5.1.3 Drift elimination. However, any crystal oscillator, even

centered at the right frequency at ambient temperature, will exhibit

a temperature dependency, also called ’drift’. This drift may affect

the CFO estimation accuracy since fine-grained CFO estimation

is required in SLoRa. Then, we attempt to quantify the frequency

drift caused by temperature. As shown in Fig. 7(a), most crystal

oscillators in LoRa nodes follow an S-shape curve in terms of the

temperature and frequency drift [16]. The unit ppm in the y-axis is
utilized to quantify the frequency drift ϵ , which can be defined by

ϵ[ppm] =
ActualFrequency −TheorecticalFrequency

TheorecticalFrequency
× 106. (5)

The inflexion point of this curve stands relatively close to the am-

bient temperature, which is equal to 25◦. Upper and lower turnover
points represent a distance where the frequency response over tem-

perature is almost linear. Consequently, we can compensate for the

frequency drift by establishing the linear relationship between the

frequency drift and temperature. In convention, the temperature

in a specific city has a narrow range, which could allow for more

precise compensation under specific temperature. However, there

may exist different linear relationships between the frequency drift

and temperature due to the manufacturing difference. According to

the experimental results of [14] and empirical study in this paper,

we find that the linear relationship only undergoes slight variations

for different LoRa nodes. The little frequency drift difference caused

by relationship variations has a negligible impact on SLoRa’s per-

formance since it can endure CFO estimation with small variations,

which will be illustrated later.
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Figure 7: The carrier frequency drift caused by temperature

and aging.
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In addition to the temperature factor, there also exists the carrier

frequency drift induced by aging. This is because crystals embedded

in LoRa nodes are electromechanical devices, and as such they are

subject to aging. Unfortunately, there is no simple rule to predict

the aging of a crystal, or even that of a batch of crystals. Figure 7(b)

demonstrates the frequency drifts of three crystal oscillators em-

bedded within three different LoRa nodes caused by aging, which

implies that this behavior over time is not monotonous. Therefore, it

is almost impossible to compensate for the aging drift theoretically.

Meanwhile, we can also observe that the frequency drift induced

by aging experiences a slow variation. Thanks to the low aging

rate, we can adopt an update strategy to accommodate for the slow

frequency drift. Details about the update scheme will be illustrated

combined with the temporal link signature in Subsection 5.3.

5.2 Link Signature Estimation

This subsection presents the definition of the spatial-temporal

link signature and how to extract fine-grained link signatures at

the gateway side. The spatial-temporal link signature relies on the

fact that the link variation within a period when the transmitter

locates at the same position is large than the link difference when

the transmitter locates at different positions.

Figure 8 depicts a communication scenario in indoor environ-

ments, where the gateway is located at position P1 and a legitimate

LoRa node is at position P2. The link between the gateway and

node is composed of multiple individual paths, including L1, L2,
and L3. Assuming an adversary at position P3 can detect the key of

the wireless link established between the gateway and legitimate

node, it then impersonates the legitimate node and launch DoS or

spoofing attacks to the gateway.

To defend against the attack, we observe that multiple paths

between the gateway and adversary is composed of links L4, L5,
and L6, which completely vary from the link between the gateway

and legitimate node. Consequently, we can leverage this distinction

to detect the attack.

Figure 8: An example of LoRa communication scenario in

indoor environments.

To defend against attacks, we rely on the observation that multi-

ple paths between the gateway and adversary completely vary from

the link between the gateway and legitimate node. Consequently,

we can use this distinction to detect attacks.

In multipath scenarios, the lengths of multiple paths differ from

each other, which result in different transmission times. Meanwhile,

different copies of source signal undergo different attenuations

and interactions with the surrounding environments. Hence, these

copies of signal arrive at the gateway with different time delays,

phases, and amplitudes. In other words, the received signal can

be regarded as the linear combination of these signal copies. We

define the relationship of this linear combination as the temporal

link signature, which can also be regarded as a linear filter, i.e.,

the channel impulse response. The relationship between the link

signature and linear filter will be verified later. Compared to the

conventional multipath effects highly relying on the transmitted

signal strength, the temporal link signature only focuses on the

relative relationship between the arrival time and attenuation of

these signal copies, and then has a more stable performance. The

temporal link signature between node i and gateway can be defined

by

hi (τ ) =
L∑

l=1

ale
jϕl δ (τ − τl ), (6)

where al and ϕl are the amplitude and phase of the lth link, and

τl represents its time delay. L denotes the total number of multiple

paths, and δ (τ ) is the Dirac delta function.
In convention, receivers measure the received signal y(t) and

perform a de-convolution combined with s(t) to deduce hi (t). How-
ever, the complicated de-convolution produces orders of magni-

tude of computation and complexity, and introduces measurement

inaccuracy simultaneously. In order to simplify this process, we

show how to achieve accurate link signature measurement without

de-convolution. Substituting Equation 6 into Equation 3, we then

rewrite Equation 3 as

y(t)C−1 = (

L∑

l=1

ale
jϕl δ (t − τl ))� (e

j2πΔf t ). (7)

According to the convolution theory, Equation 7 can be further

transformed into

y(t)C−1 = (

L∑

l=1

ale
jϕl × e

j2π (Δf +
τl

2SF
×fs )t ). (8)

Obviously, there exist multiple peaks at different bins (e.g., Δf +
τl
2SF

× fs ) with different amplitudes ale
jϕl in one upchirp, when

performing FFT on the dechirped signals F (y(t)C−1). Meanwhile,

fine-grained CFO estimation in Subsection 5.1 (i.e., Δf ) contributes
to sensitive link signatures, since different nodes bring different

CFOs at the receiver side. It should be emphasized that there may

not exist multiple distinguishable FFT peaks as expected. The rea-

son is that these FFT peaks may interfere with each other (e.g.,

stronger peaks overwhelm weaker peaks) due to the close arrival

times of different signal copies, which then constructs the unique

link signature. Consequently, the link signature formed by these

FFT peaks varies corresponding to different nodes which locate at

different places.

Next, we demonstrate the relationship between the channel im-

pulse response h(t) and proposed link signature. We multiply the

standard downchirp C−1 on both sides of Equation 1 and then

perform FFT, which can be expressed as

F (y(t)C−1) = F (C−1s(t)�h(t)), (9)

where s(t) can be represented by the standard upchirp C in the

preamble part. Therefore, Equation 9 can be rewritten as

F (y(t)C−1) = F (h(t)). (10)
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Combining Equations 8 and 10, it can be concluded that the

obtained link signature is actually the Fourier transform of the

channel impulse response h(t), which is the representation of the

linear filter between the node and gateway. Therefore, we can

obtain the link signature (i.e., the channel impulse response in

frequency domain) simply by leveraging the available demodulation

module, which lays a good foundation for a lightweight system

aiming at node authentication and security improvement. The only

difference compared to the conventional LoRa demodulation is that

we perform FFTwith a larger size of 2∗2SF , in order to achievemore

detailed observation of link signatures and maintain the decoding

accuracy simultaneously.

According to the above theoretical model, we have collected

certain link signatures extracted from the received signals when one

LoRa node respectively locates at three different positions. Since

link signatures induced by multiple signal copies with different

delays and attenuations manifest themselves consistently across

multiple frames from the same transmitter, yet distortions to link

signatures caused by noise own a more random nature, which

follows the Gaussian distributionW ∼ N (0,δ2). Consequently, we
adopt a sliding window to average these link signatures, which thus

can amplify the features of link signatures while lowering down

the ambient noise effect.
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Figure 9: The link signature measured at position D.

0 2000 4000 6000 8000 10000
Sample

Am
pl

itu
de

Figure 10: The link signature measured at position C.
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Figure 11: The link signature measured at position B.

We place the LoRa node at three different positions, for exam-

ple, position B, C, and D, respectively. Figure 9 describes the link

signatures when the LoRa node is at position D, relatively far away

from the gateway. Figure 10 shows the obtained link signatures at

position C, which is closer to the gateway compared to position D.

From these two figures, we can observe that link signatures vary

dramatically at different locations. Yet, they have a high similarity

at the same position, despite of small variations in amplitude.

We have also investigated the link signatures when the node lo-

cates at position B, which is a little closer to the gateway compared

to position C as shown in Fig. 11. The link signatures from these

two close positions have a relatively high degree of similarity. How-

ever, if we take a detailed observation, we find that link signatures

experience more variations at position C compared to position B

in terms of the envelope of link signatures, which is shown as the

red dotted line in Fig. 11 and Fig. 10. In order to investigate the

environmental variations on the link signature, we have intention-

ally set two or three person walked around in the measurement

environment. We can find that small environmental changes have

little impact on the link signature.

Before introducing the specific algorithm to distinguish the link

signatures at different locations, SLoRa should fetch representative

features from the link signatures. As mentioned above, multiple

copies of source signals arrive at the gateway with different ampli-

tudes, phases, and delays, which either constructively or destruc-

tively interfere with each other in the form of amplitude. Then, FFT

peaks corresponding to different delays can construct the unique

signature. Therefore, we select the features with respect to the

amplitude envelop to represent the link signatures.

Intuitively, SLoRa can directly extract the received samples for

comparison, which is distorted by the ambient noise especially for

long-range communications. Hence, only the envelope remains

insufficient for constructing the reliable link signature. In SLoRa,

we also extract three additional features, including maximum, min-

imum, and variance of FFT results to enrich the link signatures.

More specifically, SLoRa extracts these features by computing the

envelope, variance, maximum, and minimum within every stan-

dard upchirp since one single upchirp is utilized as an unit upon

which FFT is performed. Similar with the CFO estimation, we can

also employ the SVM model to achieve the link signature based

authentication in the presence of noise. In the experimental part, we

collect 100 link signature items to train the SVM model when LoRa

nodes locate at a fixed position. Finally, it should be noticed that

SLoRa only employs the preamble part which consists of certain

standard upchirps for the link signature estimation, regardless of

the payload length.

5.3 Combination of CFO and Link Signature

Two dimensional features can provide strict authentication for

unauthenticated nodes and then prevent active attacks, yet simul-

taneously restricting the detection accuracy for legitimate nodes.

To balance these two metrics, we select n LoRa nodes (e.g., 2, 3,

or other numbers depending on the specific conditions) according

to the comparison similarity in SLoRa, rather than only one LoRa

node obtained from the SVM model. For example, SLoRa selects

3 LoRa nodes according to the CFO extraction scheme, such as

N1, N2, and N3 in a decreasing similarity order. Meanwhile, it also

outputs 3 another LoRa nodes (e.g., N2, N3, and N4) based on the

temporal link signature. Combing these two node series according
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to two different detection schemes, SLoRa considers that the signal

is conveyed from LoRa node N2. If N2 is within the set of legitimate

LoRa nodes, then the received signal comes from a legitimate node.

Otherwise, SLoRa regards the signal is delivered from an attacker,

which will be discarded.

However, as mentioned above, both CFOs and link signatures

experience variations caused by small drifts over time. To overcome

this challenge, we propose an update strategy to accommodate for

these changes. Similar with the slow frequency drift induced by

the low ageing rate, the link signature remains almost the same

even small variations occur in surrounding environments during

the relatively short period. To adjust for large variations within

a long period, we set a history of link signatures denoted as Li
between the gateway and one node Ni used for detection, which

includes N measured link signatures. Like the collected history

with regard to the link signature, SLoRa also stores a collected

history Ci for CFO, which consists of N recently measured CFOs.

To illustrate, the initial measured CFO based on the signal conveyed

from node Ni is Fi , and SLoRa obtains two node sets according

to the comparison similarity, respectively as Ci ,Ci+1,Ci−1 and

Li ,Lm ,Ln . However, coupled with ageing, the carrier frequency

in the crystal oscillator undergoes certain changes. Assuming the

estimated CFO at the gateway side will shift to the next frequency

value Fi+1, corresponding to LoRa node Ni+1. In this case, the node

set becomes Ci+1,Ci ,Ci−1 according to the CFO estimation and

the other node set remains the same, which is equal to Li ,Lm ,Ln .
Combining these two node set, SLoRa can still consider that the

signal is transmitted from node Ni . For constant memory usage,

the oldest measurement in the N CFOs is then discarded and the

newest measured CFO is added. Similar with the CFO update, we

also perform the similar operation for the update of link signatures.

6 NODE AUTHENTICATION

We integrate SLoRa with the MAC layer security protocol since

it is an security design enhancement in physical layer over existing

LoRa communications. Then, we show how SLoRa enables node

authentication in physical layer and defend against active attacks.

Compared to conventional encryption algorithms, SLoRa only dif-

fers in that it leverages two physical-layer features (e.g., CFO and

link signature) to safeguard LoRa communications. In what follows,

we discuss cases where SLoRa achieves node authentication and

prevents deauthentication deadlock attack, jamming and replay

attack, and man-in-the-middle attack.

SLoRa leverages two fine-grained physical layer features (e.g.,

CFO and multipath profiles) to safeguard LoRa communications.

It can also act as a secondary security perimeter for the already-

implemented cryptographic mechanism in MAC layer. Compared

to individual CFO or multipath profiles based schemes, SLoRa can

provide two-dimension security for LoRa networks. For example,

SLoRa can detect the attacker even it demonstrates the same CFO

feature with one of legitimate LoRa nodes, since the attacker does

not locate at the same position with the legitimate node. On the

other hand, even the attacker locates at the same location with

legitimate nodes without being discovered, it can easily be detected

by SLoRa due to the different CFO feature. Next wewill show how to

enable device authentication and defend against two conventional

attacks in LoRa networks–node forgery and malicious congestion.

Deauthentication Deadlock Attack. There exist kinds of ac-

tive attacks. A typical DoS attack takes the vulnerability before

a secure LoRa link has been established. We consider a specific

scenario that an authentication handshake is executed. During the

process, an attacker can inject an unauthorized deauthentication

notification after receiving an acknowledgement (ACK) from the

gateway. Accordingly, the protocol deadlock occurs. To detect the

deauthentication attack, SLoRa adds two additional feature extrac-

tion process (i.e., CFO and link signatures) at the gateway side,

with slight protocol change. Upon receiving the deauthentication

message, SLoRa extracts the CFO and link signatures as illustrated

in Sections 5 and compare with legitimate nodes. If the SVM model

identifies the deauthentication command is conveyed from an at-

tacker, the gateway then discards this frame in upper layer.

Jamming and Replay Attack. An attacker equipped with mul-

tiple antennas can launch a jamming and replay attack. The attacker

can jam the association packets reception with one directional an-

tenna and records the packet with another antenna. The received

signal during jamming are the signal superposition of the legitimate

user and attacker, resulting in different CFOs and link signatures. It

can be easily detected by SLoRa at the gateway. The attacker then

replays the recorded packets to the legitimate device. Although the

recorded message is same with the legitimate node, the message

conveyed by the attacker will demonstrate variations in terms of

CFO and link signatures compared to the legitimate node due to

the hardware imperfections and location differences. Therefore, the

gateway can detect that the replay message is from the attacker and

drops these frames in upper layers. Similarly, SLoRa can prevent

other active attacks such as authentication deadlock attack in the

same way.

Man-in-the-middle Attack. An attacker can also receive the

signal from a legitimate LoRa node. Then, it calculates the CFO of

the legitimate node with respect to itself. Consequently, the attacker

can impersonate the signal of the legitimate node by compensating

the CFO, which then is received by the gateway. In convention,

this attack is called the man-in-the-middle attack. However, SLoRa

can detect this kind of attack since SLoRa combines both CFOs and

link signatures to achieve node authentication. This is because that

although the attacker can mimic the CFO of the legitimate node by

adjusting the carrier frequency, it is non-trivial to impersonate the

unique link signature between the legitimate node and gateway.

7 EVALUATION

We first introduce the implementation of our prototype, followed

by the detailed performance evaluation of SLoRa.

7.1 Implementation

We implement SLoRa on a testbed of software radio base stations

and clients built using commodity components, i.e., the commer-

cial LoRa node. The base station mainly consists of USRP N210

software radios and the WBX daughterboards which operate at

the 868 MHz bands. We leverage the UHD+GnuRadio library and

then propose our node authentication scheme, the algorithms of

which are written in C++ to deal with the received signals and
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intermediate results. There is only one antenna embedded in the

base station and the clients are the microchip RN2483 node, both

of which specify their bandwidths as 250 KHz.

We carry out experiments in our campus, including indoor and

outdoor environments, in order to demonstrate the widespread

application of SLoRa. We employ three extra off-the-shelf LoRa

nodes at 10 different locations to act as the attacker. In indoor

scenarios, we investigate its performance covering both line-of-

sight (LoS) and non-line-of-sight (NLoS) cases.

Baseline:We compare SLoRa with two baselines: LoRa+CFO:

One is the scheme only using fine-grained CFOs, since CFO has

been utilized as the signature for node authentication in 802.11

networks [6]. LoRa+Link signature: the other one is the scheme

only leveraging the link signature since link signatures have been

widely used as another signature for security improvement in wire-

less networks [18, 19, 41].

Metrics: Similar with [20], we also utilize two metrics to evalu-

ate the overall performance of SLoRa. True Positive Ratio: True

positive ratio, referred to as TPR in this paper, is defined as the

ratio of the received signals from legitimate nodes to be correctly

detected by SLoRa in all received signals. False Positive Ratio:

False positive ratio named FPR denotes the ratio of the number

of received signals from attackers to be wrongly detected as the

legitimate node by SLoRa in all received signals.

7.2 Experiments

We carry out experiments in both indoor and outdoor environ-

ments since LoRa can be employed in indoor environments such as

smart home, besides outdoor scenarios like smart agriculture.

As demonstrated in Fig. 13, we fix the LoRa receiver at position

L1, and increase the distance between the receiver and transmit-

ter by moving the transmitter to position L2, L3, L4, L5, and L6,

respectively. The attacker is located at L7, L8,..., L16, respectively.

As shown in Fig. 12, experiments are conducted in the corri-

dor of an office building with different distances set between the

transmitter and receiver.

(a) Receiver (b) Transmitter

Figure 12: The experimental setup.

LOS communications scenarios indoors. As a critical factor

in SLoRa, we first investigate how much fine-grained frequency

resolution can be achieved to demonstrate an accurate CFO estima-

tion? Experimental results are shown in Fig. 14 in the case of SF
equaling to 8. Figure 14(a) describes the TPR and FPR performance

when setting the transmitting power as 15 dbm and the distance

between the transmitter and receiver as 5 meters. In this figure,

0.5 indicates that the frequency resolution is set as 0.5 times of

FFT transform bin, and smaller number implies more fine-grained

Figure 13: The experimental scenario where the LoRa trans-

mitter locates at L1, and receiver locates at L2, L3, L4, L5, and

L6, respectively.

frequency resolution. We can observe that TPR decreases with the

increase of frequency resolution, while FPR increases. The reason

is that more fine-grained frequency resolution amplifies the noise

effect on CFO estimation although contributing to more granular

estimated CFOs.

Experimental results at around 0◦C are shown in Fig. 14(b) when

setting the distance between transmitter and receiver as 10 meters.

We can observe the similar variation trend of TPR and FPR with

the case of distance equaling to 5 meters. Meanwhile, TPR in this

case is lower than the case of 5 meters due to the distance increase.

This is because that longer propagation distance results in higher

attenuation and lower received signal strength.

We have then explored SLoRa’s performance using different

transmission powers. Figure 14(c) describes the experimental re-

sults when setting the transmission power as 3 dbm and distance

as 5 meters. Compared to the power of 15 dbm, SLoRa demon-

strates a worse performance for both TPR and FPR due to the lower

transmission power.

According to above experimental results, we can observe that

TPR dramatically declines to below 95% and FPR increases when the

frequency resolution is higher than 0.1 times of FFT bin. From an-

other perspective, if we set a coarse-grained frequency resolution–

0.5, SLoRa can achieve the highest TPR and lowest FPR, yet the

number of LoRa nodes distinguished by SLoRa will considerably

decline. Consequently, we set the frequency resolution as 0.1 times

of FFT transform bin, and then TPR can exceed 98% and FPR is

lower than 2%.

Next, we investigate both TPR and FPR performances combined

with the link signature under different transmission powers and

distances. First, we set the distance as 10 meters using different

transmission powers, respectively as 3, 6, 9, 12, and 15 dbm. Exper-

imental results are shown in Fig. 15(a), from which we find that

TPR increases with the transmission power. Even when the trans-

mission power is set as 3 dbm, TPR in SLoRa can still maintain

a high level up to 98%. Meanwhile, Fig. 15(b) describes the FPR

performance, which stays at a low level. Compared to schemes

based on individual CFO and link signature, SLoRa demonstrates a

superior performance in terms of both TPR and FPR. Furthermore,

SLoRa and individual CFO based scheme can achieve a higher TPR

than the link signature. This is because the link signature is more

susceptible to noise and other interferences, especially in dynamic

environments.

SLoRa is also evaluated with different distances between trans-

mitter and receiver, ranging from 5 to 25 meters with a step of 5

meters. As shown in Fig. 16(a), TPR based on these three different

schemes slightly declines with the distance increase. The reason is

that longer transmission distance introduces more noise influence
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(b) Power=15dbm, distance=10m

500 100 50 10
Frequency resolution(HZ)

0

0.2

0.4

0.6

0.8

1

TP
R

0

0.1

0.2

0.3

0.4

0.5

FP
R

TPR
FPR

(c) Power=15dbm, distance=10m

Figure 14: The experimental results in terms of TPR and FPR with different frequency resolutions when setting different

transmitting power, and different distances between the transmitter and receiver.
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Figure 15: The experimental results in terms of both TPR

and FPR with different transmission powers.

and reduces the received signal strength, which then reduces the

detection accuracy. However, SLoRa still achieves a high detection

accuracy up to 97% with various distances, and FPR lower than 2%

can be achieved, as demonstrated in Fig. 16(b). With respect to both

TPR and FPR, SLoRa performs better than individual CFO and link

signature under different distances. Finally, we find that the most

common scenario incurring FPR is that the CFO of the attacker

is close to one legitimate node, and locates nearby this legitimate

node. However, this scenario rarely occurs, and even if presented,

the attacker can be easily detected.
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Figure 16: The experimental results in terms of both TPR

and FPR with different distances.

NLOS communications scenarios indoors. Besides LOS com-

munication scenarios, we have also investigated SLoRa’s perfor-

mance in NLOS scenarios. Figures 17(a) and (b) illustrate the ex-

perimental results with different transmission powers in NLOS

scenarios. Obviously, we can observe that TPR increases with trans-

mission power, while FPR decreases. Figures 17(c) and (d) describe

the FPR performance when the distance increases from 3 to 15 me-

ters, which are similar with the case of LOS scenarios. Compared to

LOS, TPR based on these three schemes becomes slightly lower in

NLOS scenes. The reason is that the obstacle shields the LOS path

and lowers down the received signal strength. More specifically,

TPR based on individual link signature in this case is higher than

the LOS case. This is because the NLOS scenarios can construct

more distinguishable link signatures, which can be utilized as the

unique feature of nodes.

LOS communications scenarios outdoors.We have also con-

ducted experiments in outdoor scenarios. The LoRa gateway locates

nearby an open window at the third floor of an office building and

node is placed on the outside ground.

Similarly, we have first explored the frequency resolution in

outdoor scenarios. It should be noted that one LoRa node can reach

a transmission distance up to 400 meters at a relatively high quality

when setting SF as 8, due to the tall buildings, trees, and hardware

limitations of the USRP’s receive chain [21]. Consequently, we

explore the appropriate frequency resolution in the worst case–the

distance is set as 400 meters. Figure 18(a) verifies that we can set

the frequency resolution as 0.3. The reason is that this frequency

resolution can provide a relatively fine-grained CFO estimation

while maintaining a high TPR higher than 91%.

Next, we investigate the TPR and FPR performances with the

distance increasing from 100 to 400 meters. Experimental results

are demonstrated in Fig. 18(b), from which we can observe that

TPR gradually decreases with the distance.

We compare the TPR results based on above three schemes in

outdoor scenarios, as shown in Fig. 19(a). It can be seen that SLoRa

demonstrates a superior performance of more than 91% for TPR

compared to individual CFO and link signature based schemes.

However, unlike the indoor scenarios, link signature based scheme

outperforms the CFO based scheme in outdoor scenarios. The rea-

son is that long range communications result in weak received

LoRa signals, which then challenges the fine-grained CFO estima-

tion while constructing distinguishable link signatures. Compared

to the indoor case, SLoRa demonstrates a performance degradation

due to more severe attenuation in outdoor scenarios.

Above experiments are conducted when setting SF as 8. Next,

we have investigated the TPR performance of SLoRa when setting

SF as 10. From Fig. 19(b), we can observe that TPR when setting

SF as 10 is higher than the case of SF equaling to 8. The reason is

that LoRa can expand its extended channel through adjusting SF,

which in turn contributes to both processing gain and anti-jamming

ability improvement. With SF becoming larger, the processing gain

and anti-jamming ability for LoRa signals increase.
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Figure 17: The experimental results with different distances and transmission powers in NLOS scenarios.
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Figure 18: The detection accuracy with different frequency

resolutions when setting the distance between the transmit-

ter and receiver as 400 meters, and the detection accuracy

when setting different distances between the transmitter

and receiver.
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Figure 19: The detection accuracy when setting different dis-

tances, and the detection accuracywhen setting different SFs

with different distances.

Time consumption. Finally, we simply compare the delay in-

duced by SLoRa with different SFs . The delay time is defined as the

time consumption from the instant of detecting the preamble to the

moment of node identification decision. We find that the detection

when setting SF as 8 consumes less time (e.g., around 50ms) than

the case of SF equaling to 10, the delay time of which is around

180ms. Consequently, we can conclude that SLoRa is a lightweight

system for node authentication and security enhancement.

8 DISCUSSION AND LIMITATIONS

In this paper, we have proposed a lightweight system to achieve

physical-layer node authentication and improve the security. Unlike

the attacker can crack encryption keys, these two features are non-

trivial to obtain and even if they can be gained, attackers can hardly

manipulate themselves as the same (e.g., satisfying the CFO and

link signature features simultaneously) with the legitimate LoRa

node. Therefore, we believe SLoRa is a robust node authentication

system.

As demonstrated in the experimental results, the accuracy based

on SLoRa (i.e., the combination of CFO and link signature) is around

2% improvement than the scheme only based on CFO, which im-

plies that the link signature adds a little value in the performance

of SLoRa. However, in the scenario that the attacker mimics the

victim’s CFO, the link signature can play an important role in de-

fending against this kind of attack since the CFO difference between

the attacker and victim node has been eliminated by manipulation.

In this case, SLoRa can still prevent the attack because it is non-

trivial for the attacker to eliminate the link signature difference

between itself and victim node in wide coverage areas. Therefore,

we believe SLoRa is a robust node authentication system.

However, when setting long distances between the transmitter

and receiver, heavy attenuation occurs and thus the noise and other

interference have a serious impact on fine-grained CFO estima-

tion. SLoRa does not demonstrate a satisfactory performance in

outdoor scenarios. Another limitation of SLoRa is that both LoRa

gateways and nodes should be at relatively fixed positions in order

to construct reliable link signatures, which restricts SLoRa from

being applied to mobile scenarios. Therefore, SLoRa can not sup-

port LoRa node authentication in mobile state. Finally, SLoRa can

only defend against active attacks and makes no exploration of

protecting against passive attacks such as eavesdropping attacks

and information leakage. The challenge of dealing with passive

attacks remains an open problem.

9 CONCLUSION

This paper presents SLoRa to achieve node authentication and

improve security of LoRa communications leveraging CFOs and

link signatures. We design two novel algorithms by making full

use of LoRa’s demodulation mechanism to extract fine-grained

CFOs and link signatures, which can act as unique signatures for

individual LoRa node. Extensive experiments conducted in both

indoor and outdoor environments to demonstrate that SLoRa is a

reliable system for node authentication.
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