
SOFTSTAGE: Content Staging for Vehicular Content
Delivery in the eXpressive Internet Architecture

Jing Wang†, Chenren Xu†B, Xiuming Wang∗, Wangyang Li†, Zhenyi Li†, Shuang Jiang†, Peter Steenkiste§

†Peking University ∗South China University of Technology §Carnegie Mellon University

Abstract—Client mobility is a fundamental challenge when
accessing the current Internet, especially in the context of vehic-
ular networking because of its intermittent connectivity nature.
Meanwhile, today’s network applications are evolving from host-
to-host communication to content retrieval, and fostering new
designs of Information-centric networking (ICN) protocol and
system optimized towards this end. In this paper, we present
SOFTSTAGE, a client instructed ICN-based network layer func-
tion that effectively manages the edge caching to perform reactive
content staging to improve vehicular content delivery without
any assumption about the client mobility pattern. Experimen-
tal results based on an implementation in eXpressive Internet
Architecture (XIA) shows that SOFTSTAGE achieves up to 10x
throughput gain in vehicular networking environments.

I. INTRODUCTION

Mobile access has become the norm for today’s Internet,
however mobile user experience continues to be inferior to that
of the wired Internet. Take vehicular to infrastructure (V2I)
networking as an example. Intermittent network connectivity,
as a result of coverage gaps and frequent (slow) handoffs at
layers 2/3, does not only affect performance but also disrupts
communication sessions at the transport and application layer.
Previous work on content access in vehicular networks has
focused on the current Internet. The techniques include the
use of mobility prediction to stage content onto wireless base
stations [1], [2], [3], or separate the wireless segment with
dedicated transport design from the end-to-end path [4]. All
these solutions rely on proxies and overlay-based approaches
that are complex and hard to deploy at scale.

Recent years have witnessed a proliferation of Information-
Centric Networking (ICN) proposals [5], [6], [7] that provide
explicit support for content retrieval in the network layer. –
content is retrieved as a sequence of secured data objects
(e.g., by using a signature to ensure integrity and authenticity),
instead of the traditional solution of establishing an end-to-
end byte-stream session. In mobile environment, it is easier
to optimize communication at the data object than the byte-
stream level: one can potentially fetch objects from a closer
location, and “smaller” data objects are more likely to be
completed when connectivity is intermittent.

Building on the native benefits of ICN in content delivery,
we designed SOFTSTAGE, that performs content staging that
uses edge caching to optimize mobile content retrieval as

B: chenren@pku.edu.cn

a network layer function, and we implemented it in the
XIA future Internet architecture. The design of SOFTSTAGE
has the following four features: 1 It makes the staging
procedure completely transparent to the client application so
application developers do not have the need to worry about
content retrieval and the complexities from client/content
mobility; 2 To minimize the management overhead in the
edge network, SOFTSTAGE is split into two cooperative parts:
Staging Manager on the client side manages the staging
policy and also maintains all the associated states, while
a stateless and application-agnostic Staging Virtual Network
Function (VNF) inside the edge network cooperatively exe-
cutes content staging; 3 The staging policy for managing
the content mobility is based on the philosophy of reactive
rather than predictive – we developed a staging algorithm that
adapts to the network dynamics to make the staging action
“Just-in-Time” rather than blindly excessive/conservative; and
4 We also design a content-aware handoff manager module

to minimize the impact of disruptiveness in content delivery
during network handoff. Finally, by offloading the network
selection and (staging) VNF discovery functions to a service-
centric network sensor module, we offer an efficient and
flexible interface to allow better management of client mobility
and edge VNF discovery.

We evaluate SOFTSTAGE using commodity WiFi device
in an indoor mobility testbed with extensive experiments
accommodating the real vehicular network conditions, i.e.,
disconnectivity, dynamic network bandwidth, frequent hand-
off, high packet loss. We demonstrate that with SOFTSTAGE,
a FTP-style application can save 1.5∼10x in downloading a
stream of content objects. Note that our design is generic and
does not depend on the cause of intermittent connectivity, e.g.,
be it coverage holes, temporal failure, media contention. While
previous work has evaluated staging [3], [8] and heterogeneous
network segment management [4], [9] in vehicular network-
ing, SOFTSTAGE integrates them into a single system at the
network layer in an application-agnostic manner.

Contributions.
• We design and implement SOFTSTAGE, a content staging
network layer function to improve throughput in intermittent
(vehicular) networking environments without changing the
application semantics and predicting the client mobility.

• We validate the efficacy of SOFTSTAGE by evaluating the

content download time using both controlled and trace-driven
experiments in real testbed to show that SOFTSTAGE achieves
up to 10x throughput gain over the FTP-style applications.

II. BACKGROUND AND MOTIVATION

A. Vehicular Content Delivery Challenges

The key characteristic of vehicular networking is the inter-
mittent connectivity that results from handoffs and coverage
gaps. For instance, the Carbernet project [4] studied the
vehicular Internet access over road-side open WiFi networks
in Boston. Their results reported that when a mobile client is
moving at urban vehicular speeds, the connection time with
APs1 had a median of 4 sec and mean of 10 sec, and the ob-
served median and mean time between successive encounters
was 32 and 126 sec respectively. These number suggest that
the time available for content delivery is very limited. Even
worse, communication sessions, once established, will often
be bottlenecked in the Internet, so useful transmission time
over the wireless link is often not used efficiently.

B. Opportunities created by ICN

The goal of Information Centric Networking (ICN) is to
optimize information retrieval by making “content” a first class
citizen in the network. Specifically, ICN introduces content
addresses that represent content objects, e.g., a web page or
video segment, instead of specific network devices. Packets
sent to a content address are delivered to the nearest device
that has the content, and the semantics are that the specified
content will be sent to the client that sent the content packet.
The primary motivation for this design is that it opens the door
for network layer, application-agnostic caching of content,
since the network can deliver from the nearest cache or origin
server, e.g., as identified by a shortest path routing protocol.
One implication is that large objects, such as a video, must be
broken up in smaller chunks that can be handled efficiently
by caches. Content addresses can be the actual content names
[7] or content identifiers derived from the content or its name
[10]. As a result, ICNs often can avoid name lookup, which
can be expensive [11].

ICNs offer several features that can help optimize ve-
hicular content delivery natively, i.e., at the network layer.
First, communication based on chunks, rather than long lived
TCP sessions, is more appropriate for environments where
the connection time is short, since they can be more likely
transferred in their entirety. Second widely deployed network
layer caches can naturally be used to stage content closer to
the edge, even while the vehicle is disconnected. Finally, the
use of edge caches naturally breaks up the long client-server
connection in a long Internet segment and a short wireless
segment. This makes it possible to fully utilize the wireless
segments, possibly bursting chunks as hundreds of Mbps, as
802.11ac APs are becoming more pervasive.

1Defined as the time interval between when the first beacon and when the
last packet was heard from the AP.

In addition to ICN technology, SOFTSTAGE relies on two
more features to support efficient, vehicular content retrieval
at the network layer.

• Virtual Network Functions (VNFs) can be used incre-
mentally deployed in custom network functionality in the
network routers and devices. In SOFTSTAGE, we use VNFs
to leverage caches in the edge network to stage content (see
XCache as a reference implementation introduced in §II-C)
and collaboratively work with the clients to process their
requests from a closer location. More importantly, clients
can communicate VNFs in edge network different from it is
connected to. This allows clients to optimize content retrieval
across multiple caches as they move between edge networks.

• Multi-homing makes it possible for applications to use
more than one interface to communicate with the wireless
infrastructure. Such mechanism can be very useful in sep-
arating disjoint functions into different interfaces to reduce
the overhead of context switching in the OS and frequency
change in WNIC. For instance, wireless clients traditionally
use one WiFi interface for both data transfer and network scan.
With native multihoming support, the client can use the “data”
interface primarily for content retrieval while the “sensor”
interface can be used for received signal strength (RSS) based
layer 2/3 connectivity selection and VNF discovery.

C. eXpressive Internet Architecture (XIA)

We use XIA [6] as the network architectural basis for SOFT-
STAGE. XIA simultaneously supports multiple communication
paradigms by using multiple address types. These conclude
host identifiers (HID – traditional host-based communication),
content identifiers (CID – ICN), and service identifiers (SID
– service-centric networking). XIA also supports network
identifiers (NID – equivalent to IP prefixes). Taking content
retrieval as an example, a data chunk CID, such as a web
page or a movie chunk, can potentially be retrieved using
different types of addresses. It can be retrieved using its CID
(from the nearest location), by contacting a possibly replicated
HTTP service (SID), or by contacting the origin server directly
(HID located in network ID). Since not all routers must
support all address types, XIA allows addresses to contain
multiple identifiers, effectively specifying different ways of
reaching the destination. To represent fallbacks, XIA uses an
address format based on directed acyclic graphs (DAGs). Since
SOFTSTAGE only builds on the ICN features of XIA, we
will use a simpler representation, namely CID|NID : HID.
This address means that routers should forward the packet
based on CID if they can; otherwise they forward based on
NID : HID, which is the equivalent of an IP address. By
having the fallback (HID : NID in this case), CIDs can be
opportunistic in the sense that not every forwarding table has
to store all CIDs (or even any). We next introduce the key
elements of XIA relevant to SOFTSTAGE.

Elements of Information-centric Networking. The XIA
chunk cache, XCache, implements XIA’s native ICN support
on both end hosts and network appliances (e.g., routers). The

Network A
Host I

Mobile
Client H

Network B
Host J

Network C
Host K

Fetch Chunk
Stage Chunk
Stage Signal

Content
Server M

① ② ③ ④

Staging Virtual Network Function

Edge Cache

⑤

in Network N

Original request
DST = CID|NIDN:HIDM

Delegated request
DST = CID|NIDA:HIDI

Delegated request
DST = CID|NIDA:HIDI

Delegated request
DST = CID|NIDB:HIDJ

Delegated request
DST = CID|NIDC:HIDK

Figure 1. Overview of how SOFTSTAGE benefits vehicular content delivery.

cache stores chunks which it can serve at the network layer
when it receives ICN requests, i.e., packets with a CID
destination address. Chunks are transferred using a TCP-like
reliable protocol connection directly between XCache and the
requesting client. Content providers can publish content as
chunks in their local XCache, which can serve clients without
server involvement. Similarly, clients can optionally store
chunks in their XCache for reuse by other clients. XCache on
routers can opportunistically cache content that is forwarded
by the routers. It can also serve content when the router re-
ceives an ICN request, i.e., a packet with a “CID” destination,
that is stored in the local XCache. XCache is a network layer
module that is tightly coupled to the XIA forwarding engine;
it is implemented as a user-level daemon so it can use large
caches. For simplicity, the client Staging Manager has been
implemented in the client XCache.

Elements of Mobility-centric Networking. XIA natively
supports network-layer mobility [12]. Since both HID and
SID are the hash of a public key, XIA employs AIP-style
accountability (challenge-response protocol) [13] and active
session migration [14] to secure client mobility at both host
level and session levels. In other words, one can verify the
peer’s authenticity at any time regardless of its location.

III. SOFTSTAGE

A. System Overview

The goal of SOFTSTAGE is to efficiently use all wireless
transmission opportunities to improving content retrieval in
highly intermittent networking environments. We use vehicular
content delivery as a example and categorize SOFTSTAGE’s
operation as a sequence of steps as illustrated in Fig. 1:
1 The mobile client H initially joins Network A, starts

to fetch content objects. Initial chunks are retrieved directly
from the server, while the client contacts the edge VNF to
stage future chunks into the edge cache. 2 For later chunks,
H enjoys a smaller network latency by fetching them from
the edge cache, and meanwhile maintains the staging session
with the edge VNF. 3 After H experiences a coverage gap
and joins Network B, it is likely the cache in Network A
still holds chunks that have not been fetched by H . Instead
of downloading those chunks from the remote server, H
continues to fetch the remaining chunks from the cache inside

the old network A, while launching the staging procedure
within the current network in parallel. 4 With support of
multi-homing, H discovers a network with better connectivity
and it may handoff to Network C. Specifically, SOFTSTAGE
uses the second interface for network discovery rather mobility
prediction. This time, H not only performs handoff procedure
(similar to 2), but it also contacts the staging VNF in Network
C via the current Network B before the handoff procedure. 5
H repeats the procedure in phase 2 . Note that the content’s
ID and its network location is an explicit part of the address
used for content retrieval, which is different from a overlay
approach and thus application agnostic.

The aforementioned procedure for content delivery is highly
efficient in three aspects. First, the content is directly retrieved
from edge networks instead of the original server with lower
RTT, thus helping the underlying transport protocol by ramp-
ing up faster and getting higher bandwidth. Second, the session
benefits from the faster wireless access link, because the
Internet can be occasionally slow due to a random bottleneck
link. Third, the client is able to concurrently fetch and stage
content most of the time, thus minimizing the impact of the
intermittent network connectivity.

To actually gain such benefits, XIA offers native support
from the network layer – it facilitates accessing and deploy-
ing VNF (i.e., XCache) for splitting the traditional end-to-
end communication session into a wireless segment and the
Internet segment. On top of that, we designed SOFTSTAGE
to efficiently orchestrate the resources in both mobile client
and edge networks to realize such staging procedure in a
transparent, scalable, economical manner.

B. Design Considerations

Application Transparency. Compared to an end-to-end ses-
sion, the staging mechanism introduces additional tasks, such
as deciding when to stage content objects, and managing
the process. Although these are important issues, they ought
to be transparent to the client application, i.e., application
developers should not be involved in managing the content
mobility. Therefore, we need a client delegation mechanism
to hide all these underlying complexities transparently from
the client, e.g., through a simple data-oriented client API.

Distributed State Management. Similar to an end-to-end
session, the staging procedure also has state, but in a richer
contextual space, e.g., staging progress, chunk (session) mem-
bership, and client network location. In addition, the amount
of state can grow rapidly as SOFTSTAGE start to serve more
clients. Therefore, even though the edge network is expected
to be the staging executor, it can suffer from scalability,
availability and connectivity issues if it handles this large state
space alone. To address this issue, we require the client and
the network to cooperatively share the staging work in a client-
directed manner: in the control plane, the Staging Manager
is placed on the client side that owns the state policy and
tracks all the state, because client device is often in a better
position of knowing the application requirements and the

contextual information of the networking environment; in the
data plane, the Staging VNF inside the edge networks listen
to Staging Manager’s requests and performs content staging
accordingly so it can keep a minimal amount of state.
Content Mobility Management. Content staging is essen-
tially a content mobility management problem, in a sense
that content is replicated at a closer device before getting
requested. Typical staging techniques are based on predictive
methods [3], [8], i.e., assumes client mobility pattern can be
accurately modeled and predicted at layer-2, therefore one can
stage the “right” content into the right access points (APs) for
retrieval. We believe that this approach may not work well
in practice. First, APs’ availability can be very dynamic (e.g.,
load balancing, misconfiguration) can dramatically change the
temporal-spatial association pattern. Second, for personalized
content staging, this process can be too aggressive, i.e., net-
work resource are wasted if too many content objects are
early staged but the client decides to quit early and change
route for whatever reason. Instead, we adopt a reactive and
more economical approach – we stage the content-on-demand
in a “Just-in-Time” manner based on the network condition
dynamics and the staging execution is performed only after
client is associated with the network, to fundamentally address
the issues in predictive approach.
Client Mobility Management. Client mobility management
refers to the process of switching between access points for
better throughput and has been well studied in the context
of the current Internet [15], [16], [17] primarily based on
received signal strength. However, in a ICN architecture, a
session is broken up into a sequence of shorter chunk transfer.
This creates the opportunity to time handoffs between chunk
transfer so no transmission is wasted due to interrupted chunk
transfers or due to active transport session migration.
Fault Tolerance. The aforementioned considerations are based
on the assumption that all the encountered edge networks
have deployed Staging VNF, which may not be the case
in practice. A fallback mechanism that allows clients opt to
retrieve content objects from the original content publisher is
required for robustness enhancement.

C. System Design
The design of SOFTSTAGE involve four components:
• Client Host runs client application (e.g., ftp, video player),

which contacts the server application to retrieve the con-
tent objects’ DAG information and then calls a modified
XCache API to fetch the target chunks.

• Server Host runs server application, which listens to the
client’s request, split the target file into chunks and put
them into the local cache for serving the clients.

• Staging Manager runs inside the client host or on a sep-
arate device with reliable connectivity with it. It discovers
and communicates with Staging VNF, to perform content
staging based on its own policy.

• Staging VNF is deployed in edge networks and stages
content upon Staging Manager’s request.

The functions involved in the whole process are modular-
ized to separate the control from data planes: the control plane
handles the client application interface, address management,
signaling for staging activity and chunk-aware handoff, as well
as managing the content mobility and staging process; the
data plane uses the XCache API to fetch chunks from caches
and servers across the network. The design of SOFTSTAGE
and its operation flow is illustrated in Fig. 2. next, we
elaborate on how these modules collectively achieve the goal
of SOFTSTAGE.

Staging Manager. As mentioned in §III-B, the design of
SOFTSTAGE needs to accommodate application transparency
and management of staging state, content mobility and client
mobility. We decompose the functions on Staging Manager
side into six modules and show their interactions in Fig. 3:

• Chunk Profile populates and maintains the states (Tab. I)
indexed by addresses of the content objects (dynamically)
registered 3 by the client. It serves as the database for other
modules to update and retrieve information.

• Chunk Manager performs client delegation by providing
a delegation API XfetchChunk∗ to client applications for
content retrieval with location transparency – it allows fetching
the chunk from a closer location (e.g., edge networks) but
hides the underlying complexities from the client application.
Once called by the client application 3 , XfetchChunk∗ first
polls Chunk Profile for the new address (with the fallback
path replaced with the NID and HID of the edge network
holding the staged/cached content, e.g., CID|NIDA : HIDI

in 2 of Fig. 1) returned 6 from Staging VNF. With this
new address, it calls the native XfetchChunk 7 to fetch
chunks from edge networks if the handoff request flag is not
set (to be explained in Handoff Policy). If set, it will clear
the flag, signals Handoff Manager to switch network and
wait until joining a new network to continue fetching chunks.
Finally, it updates Chunk Profile the fetch state of the chunk
from NONE to DONE and the latency in between. Note that
if Staging VNF is not available in the current edge network
(e.g., not deployed, overloaded, or DNS failure), the staging
procedure (from 4 to 6) will be skipped and the original
DAG of the target content object (CID|NIDN : HIDM) will
be returned. In this case, XfetchChunk∗ directly calls the

Item Note

Raw DAG Dest. address with the NID and HID of XCache in the original
content server as fallback

New DAG Dest. address with the NID and HID of XCache in the EdgeNet
holding the staged chunk as fallback

Fetch State BLANK, DONE
Staging State BLANK, PENDING, READY
Location The NID and HID of the EdgeNet holding the staged chunk
Fetch RTT RTTC,EdgeNet, round-trip time between client device and

EdgeNet
Fetch Latency LEdgeNet→C , time to fetch one (staged) chunk from the

EdgeNet to the client device
Staging Latency LS→EdgeNet, time to stage one chunk from the original

content server to the EdgeNet

Table I
CHUNK PROFILE MANAGES THE KEY INFORMATION FOR CONTENT

STAGING.

Client
App

Client Host

Staging
Tracker

Staging
Coordinator

Staging Manager

Router

Staging
Virtual

Network
Function

Server Host

XIA
Cache

Server
App1 2

2

3

4

5

6

7
Chunk

IDs

Chunk

Chunk

stageChunk

Chunk staged

putChunk

fetchChunk*

getFile

Control PlaneData Plane

XIA Cache

XIA Cache

7
Chunk

Figure 2. SOFTSTAGE design and its operational flow.

Raw DAGs (only when generated);
Fetch latency

New
DAGs

Number of chunks to stage

Chunks to stage

“Ready” of the staged
chunks with new DAGs;
Staging latency;
Fetch RTT

Handoff
Manager

RSS and
in-net service
information

Network
Sensor

Staging
Tracker

Chunk
Manager

Chunk
Profile

Staging
Coordinator

Current chunk finished

Fetch latency & RTT;
Staging latency

DAG of Staging
Virtual Network
Function

Figure 3. Staging Manager design.

native XfetchChunk to fetch the chunk from the original
content server and sets the associated staging state to DONE
to avoid duplicated staging.

• Network Sensor uses a separate (or virtual) wireless inter-
face to scan for new network connection opportunity, collect
RSS measurements, and discover any VNF2. This information
will be periodically updated to and used by Handoff Manager
for better handoff decision. It also sends Staging Tracker the
address information of the (staging) service in edge networks.

• Handoff Manager is responsible for deciding when to per-
form a handoff. In our default policy, we adopt the legacy
algorithm that switch to a new AP with a higher RSS than the
current one. To further improve the performance by reducing
the overhead in active session migration, we developed a
Chunk-aware Handoff algorithm – it sets the handoff request
flag and will not start the handoff procedure until it is
informed by Chunk Manager about the completion of the
chunk currently being fetched.

• Staging Coordinator polls Chunk Profile and synthesizes
all relevant information to decide how many chunk(s) to stage
without any assumption of the client mobility pattern, and
it then notifies the Staging Tracker. This reactive staging
algorithm will be detailed in §III-D.

• Staging Tracker is informed by the Staging Coordinator
of the number of chunks to stage, looks up the corre-
sponding addresses from Chunk Profile, forwards them to
Staging VNF 4 and updates their Stage State to PENDING
in Chunk Profile. Once receiving the “chunk staged” message
back 6 , it updates the Chunk Profile with the address (with
EdgeNet’s NID and HID), the staging state (to READY),
staging latency and fetch RTT of the staged chunks.

Staging Virtual Network Function. It is responsible for
prefetching individual chunks and staging them in the XCache
for retrieval by the mobile device. This is a very lightweight
virtual network function embedded inside XCache that is
application-agnostic. It works as follows: first, when requested

2The VNF discovery is achieved by Network Joining Protocol [18] – the
access network advertises its presence with any usable VNF information in
its beacon message. The detail is omitted here.

by Staging Manager, it stages the target chunks from content
servers into its local XIA cache; second, it responds to the
client by sending the message back including the addresses
(with the edge network’s NID and HID) and their correspond-
ing latency and RTT to be used by the staging algorithm. Once
the chunk is staged, the client can retrieves the chunk locally
using the XIA standard XfetchChunk API whenever it is
connected to the network.

D. Staging Algorithm
SOFTSTAGE aims to perform content staging in an econom-

ical manner – it stages an “optimal” or minimum number N of
content objects ahead of the one currently being fetched into
the edge network on a reactive basis, rather than predictively
plan for all the remaining ones in the session into different
networks/APs beforehand [3], [8]. By doing that, network
resources such as network bandwidth and cache space be
utilized more efficiently. To ensure the continuity of content
fetching on the client side, it is important to keep sufficient
chunks staged in edge networks.

Intuitively, N should be selected based on the network state.
For instance, it is safer to keep a large N when we have a fast
wireless link. Let us denote C as client, S as original content
server, EdgeNet as edge network. The corresponding latency
and RTT are summarized in Tab. I. Note that in SOFTSTAGE,
fetch and staging are asynchronous: Staging VNF can con-
tinue to work when the client is disconnected. When clients
start to fetch the staged content, Staging VNF will have to
catch up very quickly. Since the wireless link can be faster than
Internet, it is critical to determine the optimal number of N
chunks staged for buffering. In other words, we want to ensure
the time to have the client fetch the staged N chunks is longer
than the time it takes to stage a new chunk, otherwise, we need
to stage a new chunk immediately. To stage a new chunk,
it takes RTTC,EdgeNet 4 and 6 for Staging Manager to
query Staging VNF, which in turn takes LS→EdgeNet 5 to
stage a chunk from the original server. Similarly, assuming all
the chunks are fetched in sequential, it takes N ·LEdgeNet→C

7 to fetch all the N staged chunks. Hence, when N satisfies

N <
RTTC,EdgeNet + LS→EdgeNet

LEdgeNet→C
,

Design consideration Responsible module and comments
Application Transparency The delegation API XfetchChunk∗ coordinates with Chunk Manager to retrieve the DAG for fetching the chunk

staged by Staging Tracker
Distributed State Management Chunk Profile maintains all the state updated by Chunk Manager and Stage Tracker.
Content Mobility Management Staging Coordinator decides when to stage which chunks based on the network condition (e.g., latency and RTT)

estimated by Chunk Manager and Staging Tracker.
Client Mobility Management Handoff Manager performs chunk-aware handoff based on RSS and VNF information from Network Sensor and fetch

state from Chunk Manager.
Fault Tolerance Chunk Manager will return the chunk’s original DAG to the delegation API XfetchChunk∗ if it learns the

target chunk was not signaled to stage from Chunk Profile or no Staging VNF available in the edge network from
Network Sensor.

Table II
RECAP OF HOW DIFFERENT MODULES IN SOFTSTAGE COPE WITH THE DESIGN CONSIDERATIONS.

Edge router

Internet Router

Content server

802.11n 802.11nEdge router

Figure 4. Experimental testbed.

a new chunk needs to be staged immediately.

IV. EVALUATION

We implemented SOFTSTAGE on top of the XIA prototype
[10] and used it experimentally evaluate SOFTSTAGE.

A. Experimental Setup

When designing experiments, we should keep in mind that a
typical V2I network has three key characteristics: intermittent
connectivity, high packet loss rate and networks with overlap-
ping coverage. The first two factors can be captured by real
data trace, while the last one can be emulated with a carefully
designed network topology and experimental testbed.
Networking Environment Profiling. We employ the dataset
from the Carbernet project [4] because it has a variety of V2I
traces collected from 124 driving hours and 26000 APs in
Boston area, which we believe is extensive and representative.
We use 25th, 50th and 75th percentile of the encounter time
(from 3 to 12 sec), disconnection time (from 8 to 100 sec)
and packet loss (from 20% to 40%) respectively to emulate
different V2I scenarios such as metropolis and urban areas.
Topology and Testbed. We use the network topology shown
in Fig. 4 to emulate the V2I networking environment, primarily
for supporting inter-network roaming. Specifically, we use
COTS WiFi APs [20] rather than hostapd [21], both because
the latter’s performance is often suboptimal due to software
overhead, but also because XIA runs natively on any layer-2
device.

B. XIA Benchmark

To understand the baseline performance of the current XIA
software implementation, we first benchmark the throughput
of 10 MB file transfers using Xstream (using a XIA byte
stream session) and XChunkP (a sequence of 2 MB Chunk
XIA transfers), and compare it with that of Linux TCP (based

 0

 20

 40

 60

 80

 100

TCPLinux TCPXIA XChunkP

T
h
ro

u
g
h

p
u
t

(M
b

p
s
)

100 Mbps Internet 802.11n

Figure 5. Benchmark results.

on iPerf [22]) over both a wired and an 802.11n segment. Both
XIA byte streams and chunk transfers use the same underlying
TCP-like transport protocol. Since XIA is implemented based
on the Click modular router [23] as a user-level daemon, its
performance is expected to be lower than that of a native Linux
TCP implementation.

Based on Fig. 5, we can make three key observations.
First, in terms of application-level performance, Xstream is
comparable to Linux TCP (22 versus 28) over 802.11n, which
suggests that the XIA implementation is good enough for
wireless experiments in our setting. Second, when running
over a wired segment, Xstream is worse than Linux TCP
(66 versus 95). However, this is not a problem for our study
because it is still faster than the wireless segment and we can
change the packet loss rate to emulate different bandwidth on
the Internet segment to study its impact on the SOFTSTAGE’s
performance relative to the fix rate of 802.11. Finally, the
performance of XChunkP is slightly worse than Xstream (19
versus 22 and 56 versus 66 on 802.11n and wired segment
respectively). This result is expected because the XChunkP
transfer is broken up in chunks that are fetched separately and
this comes with larger protocol overhead.

C. Controlled Experiments

1) Micro-benchmarks: Intuitively, SOFTSTAGE ‘s behavior
depends on the network environments. We summarize the
variables of interest in Tab. III and will elaborate on them

 0

 100

 200

 300

 400

256 640 1280 2048 4096 10240

T
ra

n
s
fe

r
T

im
e

 (
s
)

Chunk Size (KB)

SoftStage Xftp

(a) Chunk size

 0

 100

 200

 300

 400

3 4 12

T
ra

n
s
fe

r
T

im
e

 (
s
)

Encounter Time (s)

SoftStage Xftp

(b) Encounter time

 0

 150

 300

 450

 600

8 32 100

T
ra

n
s
fe

r
T

im
e

 (
s
)

Disconnection time (s)

SoftStage Xftp

(c) Disconnection time

 0

 50

 100

 150

 200

22% 27% 37%

T
ra

n
s
fe

r
T

im
e

 (
s
)

Packet Loss Rate (%)

SoftStage Xftp

(d) Packet loss rate

 0

 500

 1000

 1500

60 30 15

T
ra

n
s
fe

r
T

im
e

 (
s
)

Internet Bandwidth (Mbps)

SoftStage Xftp

(e) Internet bandwidth

 0

 100

 200

 300

 400

5 10 20 50 100

T
ra

n
s
fe

r
T

im
e

 (
s
)

Internet Segment Latency (ms)

SoftStage Xftp

(f) Internet latency

Figure 6. Performance gain of SOFTSTAGE downloading a 64 MB file under different parameters.

as we move on. In this set of micro-benchmark experiments,
the mobile client starts to download a 64 MB file and will
switch between two edge networks back and forth – it stays
Encounter Time in each network, and disconnects from it for
Disconnection Time before joining the other one. We vary the
variable of interest and keep the rest of them as “default” to
study their impact on SOFTSTAGE’s performance.

Application Properties – Chuck Size. The chunk size is
directly tied to the application and the QoE. For example,
according to the Youtube recommended SDR video bit rates
for Standard Frame Rate uploads [19], the chunk size of
0.25, 0.625, 1.25, 2, 4 and 10 MB represent the size of
2 sec’ video clip of 360p, 480p, 720p, 1080p, 1440p (2K)
and 2160p (4K). Intuitively, bigger chunk size introduces less
protocol overhead and hence improves the throughput. But this
improvement is not sustainable, simply because it takes more
time to complete fetching a chunk. This hurts the performance
when fetching the chunk across the network (2 in Fig. 1)
and taking more time to make the staged chunk ready for
use. In Fig. 6(a), we observes this trend for both Xftp and
SOFTSTAGE, and SOFTSTAGE consistently outperforms Xftp.
SOFTSTAGE achieves 1.59x to 1.96x than Xftp as chunk size
increases, because the control plane messages introduce more
overhead with smaller chunks.

Client Mobility – Encounter Time. It is jointly determined
by client’s moving speed and network size (e.g., number of
APs aggregated at SSID level). We choose 12-sec, the 75th
percentile as our default value because of the recent densifica-
tion progression of AP deployment by cellular operators – the
coverage of such small cells or APs’ can be geographically
contiguous for a block of street, and this is the number a
vehicular client can received WiFi coverage when the traffic
is light. We also keep 3 and 4 sec as it represents the case
that AP as a single network. In Fig. 6(b), we observe that
SOFTSTAGE outperforms 1.77x when encounter time is 12
sec, which is better than 1.55x when there is only 3 sec of
network connection. Longer encounter time will reduce the
number of chunks experiencing active session migration (a
fixed overhead of 1 or 2 sec), and thus more time can be used
for content retrieval.

Client Mobility – Disconnection Time. It captures the layer-3
mobility in the context of hard handoff – the total time between

client device joins a new network and disconnected from the
previous network. We choose 8-sec the 25 percentile as our
default value again because of the densification progression
in recent years. We also keep 32 and 100 sec for the cases
that AP deployment are rather sparse, such as rural area, etc..
From Fig. 6(c), we can see that when disconnection happens,
SOFTSTAGE enables the edge network to continue staging the
remaining partial chunk, so it takes less time to finish fetching
the remaining partial chunk when connection is recovered.
Since the least disconnection time (8 sec) is long enough for
Staging VNF to finish staging, the increasing of disconnection
time won’t influence the total time that used to fetch chunks.
So the performance gain for different disconnection time is
close, which is about 1.7x.

Channel Fading – Packet Loss Rate. V2I networking often
experiences packet loss because of the large scale fading from
static/moving objects’ blockage. In this setting, we still choose
the number reported from [4] in 2008 since the blockage prob-
lem is orthogonal to the recent advance in wireless technology.
As shown in Fig. 6(d), when the packet loss increases, the
performance gain of SOFTSTAGE goes higher from 1.37x to
1.77x. For SOFTSTAGE, it achieves better results than Xftp
because in the case where packet loss cannot be hidden from
higher layer (with local link-level retransmission), the packet
will be retransmitted from a closer location.

Network Congestion – Internet Bottleneck Bandwidth.
Independent from the wireless edge network, the bottleneck
bandwidth of the Internet can be affected by many factors.
Here, we want to evaluate how it impacts the performance of
SOFTSTAGE. Since our testbed is in a controlled networking
environment, we can easily emulate and set the Internet
bandwidth as 60, 30 and 15 Mbps representing the link speed
which is much higher than, higher than and comparable to the
wireless by tuning the packet loss rate in the NIC. For Xftp, its
throughput is highly dependent on the bottleneck bandwidth
between the client and the content server, i.e., the Internet in
this study, as shown in Fig. 6(e). However, since SOFTSTAGE
monitors the network conditions and will aggressively stage
more chunks when the Internet bandwidth is detected slow,
especially when the client is disconnected from the network,
its performance gain over Xftp boosts from 1.77x to 9.94x
when the Internet bandwidth is reduced from 60 to 15 Mbps.

Parameter Default Note Others candidate values
Chunk Size 2 MB 2 secs’ 720p Youtube video clip [19] 0.25, 0.625, 1.25, 4 and 10 MB
Encounter Time 12 sec Theoretical maximum duration associated with the same SSIDa 3 and 4 sec
Disconnection Time 8 sec Time between two consecutive encounters 32 and 100 sec
Packet Loss Rate 27% Wardriving measurements in vehicular content delivery [4] 22% and 37%
Internet Bandwidth 60 Mbps Typical bottleneck bandwidth in WAN with moderate congestionb 15, 30 Mbps
Internet Latency 20 ms Typical RTT to CDN (e.g., web portals, streaming media, etc.) 5, 10, 50 and 100 ms

aThe interval between hearing the first beacon and the time at which the last beacon was heard from the same AP. Therefore this approximation assumes
the overhead of layer-2 mobility such as (re)association and authentication can be optimized to near-zero by agent/proxy and mobility controller.

bThe measured maximum application level throughput the current XIA transport implementation can achieve over a wired segment without introducing any
extra latency. This number can even be much higher in reality.

Table III
PARAMETER SETTING FOR EXPERIMENTS.

 0

 1

 0 9 18 27 36 45

WiFi AP Trace 1

 0

 1

 0 20 40 60 80 100

Time (s)

WiFi AP Trace 2

(a) Trace Shape

 0

 5

 10

 15

 20

 0 8 16 24 32 40

T
ra

n
s
fe

r
C

h
u

n
k

Time (s)

Xftp fetch
SoftStage

 0

 20

 40

 60

 0 25 50 75 100

T
ra

n
s
fe

r
C

h
u

n
k

Time (s)

Xftp fetch
SoftStage

(b) Results for trace 1 and 2

Figure 7. Trace-driven experiments.

Content Location – Internet Latency. The round trip time
across the Internet can be affected by queuing delay, load
balancing and physical location of the CDN server. We add
the latency in the NIC on the content server to capture their
overall effect. As shown in Fig. 6(f), we observe that the
performance gain of SOFTSTAGE increases from 1.38x to 2.3x
as the Internet segment latency or RTT increases from 5 ms to
100 ms. The reason is similar to our analysis on the Internet
Bottleneck Bandwidth – when the Internet is detected slow,
SOFTSTAGE will take advantage of the disconnection period
to aggressively stage more chunks earlier to a closer location.

D. Handoff Policy

Handoff are frequent in vehicular networking. All the previ-
ous experiments focus on the hard handoff – the client never
experiences the case that multiple networks’ coverage over-
laps, which brings the opportunity for SOFTSTAGE to perform
step in phase 4 in Fig. 1. In this context, interestingly, the tim-
ing of handoff can also have an impact on performance. Here,
we study two handoff policies: Default. Blindly switches to
the network with a stronger received signal strength; Content-
aware. Switches to new network until finishing fetching the
current chunk. Note that the Staging VNF in new network
receives stage signal and performs staging before the handoff
procedure. Our experiments use the default setting in previous
experiments where the encounter time of each network is
12 sec, while the overlap between two networks are 3 sec.
Our results show that our proposed content-aware handoff
policy can reduce 21.7% download time in comparison to
the default policy. We expect the performance gain will be
more significant when the active session migration takes longer
time, in the situations when the edge networks or the wireless
channel is more congested.

E. Trace-driven Mobile Experiments

In order to evaluate the performance of SOFTSTAGE in real
vehicular networking environments, we conduct a day-long
wardriving across multiple street blocks in popular areas in
Beijing, and only record the trace from the APs deployed by
cellular operators. The reason is because in terms of legal
access, this is more realistic to assume they are accessible
with predictable performance, in contrast to the private APs
owned by local residents or enterprise. The collected WiFi
traces go to two extremes: network coverage either reaches
above 80%, or less than 2%, and we select two traces from
the former category since that it is more reasonable to use
cellular networks for Internet access than in the latter case.
As plotted in Fig. 7(a), we use 1 and 0 in Y axis to represent
the period when the device is connected to the network or
not. We choose two traces with different network connectivity
patterns. As shown in Fig. 7(b), with SOFTSTAGE, the mobile
client can download almost twice the content objects in the
same networking environment.

V. DISCUSSION

Extension to Video Streaming and Web. Although in this
paper SOFTSTAGE only demonstrates the benefits it can bring
to a ftp-like application with fixed chunk size and content,
it actually provides native support for general content deliv-
ery, such as rate adaptive Video-on-Demand (VoD) [24] and
dynamic object in Web applications [25].
ICN and CDN. We note that CDN presents the mainstream
solution for reducing content retrieval. Yet, our approach is
complementary to rather than incompatible with CDN – with
caching at the network layer, one can deploy edge VNF like
SOFTSTAGE on top of ICN to improve personalized content
delivery in pervasive layer-3 devices rather than proxy-based
solutions.
Content Cache Management Policy. We only consider one
content cache per access network, which has significant lim-
itations in latency, availability, fault-tolerance and scalability.
We plan to explore different caching policies, load balancing
strategies to address these problems in the future.

VI. RELATED WORK

Content Staging/Prefetching in Vehicular Content Delivery.
This topic has been widely studied in the past years. To our
best knowledge, most of them use predictive methods [1], [2],
[3] based on human mobility modeling [26], [27], [28]. The
work [1] develops a staging strategy considering a client’s rich
mobility information (location, direction and speed) as well as
different bandwidth of the edge networks. In [29], a technique
has been described to use the cellular network to send data
prefetch requests and the data is staged at the prefetch agents
located at hot-spotted networks. The work [3] predict mobility
and connectivity from people’s drives and develop scripted
handoff and data transfer strategies to speed up download
performance. Our work differ from them in that we argue

human mobility can not be always accurately predicted and
instead choose a reactive approach to stage the content-on-
demand for Vehicular WiFi access. SOFTSTAGE works in the
context that client chooses the network for connection without
the knowledge of mobility prediction.
Vehicular Content Delivery in Future Internet Architec-
ture. NDN [7] allows applications to use data name for
content retrieval from any content store inside the networks.
On top of that, Navigo [30] developed solutions to the problem
of mapping data names to data locations and forwarding
Interest packets along the best path, and also designed an
adaptive discovery and selection mechanism that can identify
the available data sources across multiple geographic areas
and can quickly react to sudden changes in vehicle networks.
MobilityFirst [31] is unique in its GNRS, a distributed naming
service system that maintains the mapping of GUID and
network address. It enables the edge networks to effectively
collect the client network association trace. EdgeBuffer [8]
leverages this information to predict the spatial and temporal
trajectory of each client, estimates the time intervals in which
the clients will be covered by each AP and predictively stage
the content into the APs. SOFTSTAGE differs from it in that
its staging behavior is reactive and thus more robust to the
dynamic client mobility pattern.

VII. CONCLUSION

Staging is an invaluable mechanism for improving the
downlink throughput and performance of mobile applications.
In comparison with prefetching, it is cheaper and is becoming
more deployable due to rise of mobile edge computing where
massive cache and replicated VNFs will be pushed to the edge
networks. We demonstrate that it is feasible to design and
implement a network layer function named SOFTSTAGE, that
can effectively leverages the edge resources to perform content
staging, without any assumption about the client mobility
pattern. SOFTSTAGE also presents a decent effort to synthesize
and incorporate the efficient network layer mobility and ICN
features to manage the heterogeneous network segments and
provide a practical solution for optimizing the content delivery
in intermittent network connectivity.

ACKNOWLEDGMENTS

This work is supported in part by National Key Research
and Development Plan, China (Grant No. 2016YFB1001200),
National Natural Science Foundation of China (Grant No.
61802007 and 61672499) and Science and Technology Innova-
tion Project of Foshan City, China (Grant No. 2015IT100095).

REFERENCES

[1] Tao Ye, H Jacobsen, and Randy Katz. Mobile awareness in a wide area
wireless network of info-stations. In ACM MobiCom, 1998.

[2] Aruna Balasubramanian, Brian Neil Levine, and Arun Venkataramani.
Enhancing interactive web applications in hybrid networks. In ACM
MobiCom, 2008.

[3] Pralhad Deshpande, Anand Kashyap, Chul Sung, and Samir R Das.
Predictive methods for improved vehicular wifi access. In ACM MobiSys,
2009.

[4] Jakob Eriksson, Hari Balakrishnan, and Samuel Madden. Cabernet:
vehicular content delivery using wifi. In ACM MobiCom, 2008.

[5] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass,
Nicholas H Briggs, and Rebecca L Braynard. Networking named
content. In ACM CoNEXT, 2009.

[6] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek
Lim, Michel Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella,
David G Andersen, et al. Xia: Efficient support for evolvable internet-
working. In USENIX NSDI, 2012.

[7] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick
Crowley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al.
Named data networking. ACM SIGCOMM Computer Communication
Review, 44(3), 2014.

[8] Feixiong Zhang, Chenren Xu, Yanyong Zhang, KK Ramakrishnan,
Shreyasee Mukherjee, Roy Yates, and Thu Nguyen. Edgebuffer: Caching
and prefetching content at the edge in the mobilityfirst future internet
architecture. In IEEE WoWMoM, 2015.

[9] Fahad R Dogar and Peter Steenkiste. Architecting for edge diversity:
supporting rich services over an unbundled transport. In ACM CoNEXT,
2012.

[10] eXpressive Internet Architecture. https://github.com/XIA-Project/xia-c
ore/wiki.

[11] Ankit Singla, Balakrishnan Chandrasekaran, P Godfrey, and Bruce
Maggs. The internet at the speed of light. In ACM HotNets, 2014.

[12] David Naylor, Matthew K Mukerjee, Patrick Agyapong, Robert Grandl,
Ruogu Kang, Michel Machado, Stephanie Brown, Cody Doucette, Hsu-
Chun Hsiao, Dongsu Han, et al. Xia: architecting a more trustworthy and
evolvable internet. ACM SIGCOMM Computer Communication Review,
44(3), 2014.

[13] David G Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen,
Daekyeong Moon, and Scott Shenker. Accountable internet protocol
(aip). In ACM SIGCOMM, 2008.

[14] Alex C Snoeren and Hari Balakrishnan. An end-to-end approach to host
mobility. In ACM MobiCom, 2000.

[15] Sudarshan Vasudevan, Konstantina Papagiannaki, Christophe Diot, Jim
Kurose, and Don Towsley. Facilitating access point selection in ieee
802.11 wireless networks. In ACM IMC, 2005.

[16] Ishwar Ramani and Stefan Savage. Syncscan: practical fast handoff for
802.11 infrastructure networks. In IEEE INFOCOM, 2005.

[17] Anthony J Nicholson, Yatin Chawathe, Mike Y Chen, Brian D Noble,
and David Wetherall. Improved access point selection. In ACM MobiSys,
2006.

[18] Network Joining Protocol. https://github.com/XIA-Project/xia-core/wi
ki/NetJoin.

[19] https://support.google.com/youtube/answer/1722171?hl=en.
[20] Tl-ap1750c-poe. http://www.tp-link.com.cn/product 422.html.
[21] Hostapd. https://w1.fi/hostapd/.
[22] UDP iPerf The ultimate speed test tool for TCP and SCTP. https://iper

f.fr/.
[23] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans

Kaashoek. The click modular router. ACM Transactions on Computer
Systems, 18(3), 2000.

[24] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and
Mark Watson. A buffer-based approach to rate adaptation: Evidence
from a large video streaming service. In ACM SIGCOMM, 2015.

[25] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha,
and Vyas Sekar. Klotski: Reprioritizing web content to improve user
experience on mobile devices. In USENIX NSDI, 2015.

[26] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating location
predictors with extensive wi-fi mobility data. In IEEE INFOCOM, 2004.

[27] Jungkeun Yoon, Brian D Noble, Mingyan Liu, and Minkyong Kim.
Building realistic mobility models from coarse-grained traces. In ACM
MobiSys, 2006.

[28] Anthony J Nicholson and Brian D Noble. Breadcrumbs: forecasting
mobile connectivity. In ACM MobiCom, 2008.

[29] Naoki Imai, Hiroyuki Morikawa, and Tomonori Aoya. Prefetching
architecture for hot-spotted networks. In IEEE ICC, 2001.

[30] Giulio Grassi, Davide Pesavento, Giovanni Pau, Lixia Zhang, and Serge
Fdida. Navigo: Interest forwarding by geolocations in vehicular named
data networking. In IEEE WoWMoM, 2015.

[31] Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani.
Mobilityfirst: a robust and trustworthy mobility-centric architecture
for the future internet. ACM SIGMOBILE Mobile Computing and
Communications Review, 16(3), 2012.

