
Scalable, Secure, and
Highly Available

Distributed File Access

Mahadev Satyanarayanan
Carnegie Mellon University

or the users of a distributed system
to collaborate effectively, the abil-
ity to share dataeasily is vital. Over

the last decade, distributed file systems
based on the Unix model have been the
subject of growing attention. They are now
widely considered an effective means of
sharing data in academic and research en-
vironments. This article presents a sum-

Our design has evolved over time, re-

Andrew file system, called AFS-1, AFS-2,
sulting in three distinct versions of the

and AFS-3. In this article “Andrew file
system” or “Andrew” will be used as a
collective term referring to all three ver-

F
Andrew and Coda are
distributed Unix
systems that embody
many O f the recent sions.

mary and historical perspective of work
done by my colleagues, students, and I in
designing and implementing such systems
at Carnegie Mellon University.

This work began in 1983 in the context
of Andrew, a joint project of CMU and
IBM to develop a state-of-the-art comput-
ing facility for education and research at
CMU. The project envisioned a dramatic
increase in computing power made pos-
sible by the widespread deployment of
powerful personal workstations. Our char-
ter was to develop a mechanism that would
enable the users of these workstations to
collaborate and share data effectively. We
decided to build a distributed file system
for this purpose because i t would provide
the right balance between functionality
and complexity for our usage environment.

It was clear from the outset that our
distributed file system had to possess two
critical attributes: It had to scale well, so
that the system could grow to its antici-

advances in solving
the problem of data

sharing in large,
physically dispersed

workstation
environments.

pated final size of over 5,000 workstations.
It also had to be secure, so that users could
be confident of the privacy of their data.
Neither of these attributes is likely to be
present in a design by accident, nor can it
be added as an afterthought. Rather, each
attribute must be treated as a fundamental
constraint and given careful attention dur-

As our user community became more
dependent on Andrew, the availability of
data in i t became more important. Today, a
single failure in Andrew can seriously
inconvenience many users for significant
periods. To address this problem, we be-
gan the design of an experimental file
system called Coda in 1987. Intended for
the same computing environment as An-
drew, Coda retains Andrew’s scalability
and security characteristics while provid-
ing much higher availability.

The Andrew
architecture

The Andrew computing paradigm is a
synthesis of the best features of personal
computing and timesharing. It combines
the flexible and visually rich user interface
available in personal computing with the
ease of information exchange typical of

May 1990 0018-9 lh?l9010500-0009$01.00 0 1990 LEE€ 9

I .

Vice

IWI
Figure 1. A high-level view of the An-
drew architecture. The structure la-
beled “Vice” is a collection of trusted
file servers and untrusted networks.
The nodes labeled “W” are private or
public workstations, or timesharing
systems. Software in each such node
makes the shared files in Vice appear
as an integral part of that node’s file
system.

Figure 2. File system view at a work-
station: how the shared files in Vice
appear to a user. The subtree under
the directory labeled “afs” is identical
at all workstations. The other directo-
ries are local to each workstation.
Symbolic links can be used to make lo-
cal directories correspond to directo-
ries in Vice.

timesharing. A conceptual view of this
model is shown in Figure 1.

The large, amoeba-like structure in the
middle, called Vice, is the information-
sharing backbone of the system. Although
represented as a single entity, it actually
consists of a collection of dedicated file
servers and a complex local area network.

User computing cycles are provided by
workstations running the Unix operating
system.

Data sharing in Andrew is supported by
a distributed file system that appears as a
single large subtree of the local file system
on each workstation. The only files outside
the shared subtree are temporary files and
files essential for workstation initializa-
tion. A process called Venus, running on
each workstation, mediates shared file
access. Venus finds files in Vice, caches
them locally, and performs emulation of
Unix file system semantics. Both Vice and
Venus are invisible to workstation pro-
cesses, which only see a Unix file system,
one subtree of which is identical on all
workstations. Processes on two different
workstations can read and write files in this
subtree just as if they were running on a
single timesharing system. Figure 2 de-
picts the file system view seen by a work-
station user.

Our experience with the Andrew archi-
tecture over the past six years has been
positive. It is simple and easily understood
by naive users, and it permits efficient
implementation. It also offers a number of
benefits that are particularly valuable on a
large scale:

9 Data sharing is simplified. A worksta-
tion with a small disk can potentially ac-
cess any file in Andrew by name. Since the
file system is location transparent, users do
not have to remember the machines on
which files are currently located or where
files were created. System administrators
can move files from one server to another
without inconveniencing users, who are
completely unaware of such a move.

User mobility is supported. A user can
walk to any workstation in the system and
access any file in the shared name space. A
user’s workstation is personal only in the
sense that he owns it.

9 System administration is easier. Op-
erations staff can focus on the relatively
small number of servers, ignoring the more
numerous and physically dispersed clients.
Adding a new workstation involves merely
connecting i t to the network and assigning
i t an address.

Better security ispossible. The servers
in Vice are physically secure and run
trusted system software. No user programs
are executed on servers. Encryption-based
authentication and transmission are used
to enforce the security of server-worksta-
tion communication. Although individuals
may tamper with the hardware and soft-
ware on their workstations, their malicious

actions cannot affect users at other work-
stations.

Client autonomy is improved. Work-
stations can be turned off or physically
relocated at any time without inconve-
niencing other users. Backup is needed
only on the servers, since workstation disks
are used merely as caches.

Scalability in Andrew

A scalable distributed system is one that
can easily cope with the addition of users
and sites, its growth involving minimal
expense, performance degradation, and
administrative complexity. We have
achieved these goals in Andrew by reduc-
ing static bindings to a bare minimum and
by maximizing the number of active clients
that can be supported by a server. The
following sections describe the evolution
of our design strategies for scalability in
Andrew.

AFS-1. AFS-1 was a prototype with the
primary functions of validating the An-
drew file system architecture and provid-
ing rapid feedback on key design deci-
sions. Each server contained a local file
system mirroring the structure of the
shared file system. Vice file status infor-
mation, such as access lists, was stored in
shadow directories. If a file was not on a
server, the search for its name would end in
a stub directory that identified the server
containing that file. Since server processes
could not share memory, their only means
of sharing data structures was via the local
file system.

Clients cached pathname prefix infor-
mation and used it to direct file requests to
appropriate servers. The Vice-Venus inter-
face named files by their full pathnames.
There was no notion of a low-level name,
such as the inode in Unix.

Venus used a pessimistic approach to
maintaining cache coherence. All cached
copies of files were considered suspect.
Before using a cached file, Venus would
contact Vice to verify that it had the latest
version. Each open of a file thus resulted in
at least one interaction with a server, even
if the file was already in the cache and up
to date.

For the most part, we were pleased with
AFS-1. Almost every application was able
to use Vice files without recompilation or
relinking. There were minor areas of in-
compatibility with standard Unix seman-
tics, but these were never serious enough to
discourage users.

10 COMPUTER

Design principles from Andrew and Coda
The design choices of Andrew and

Coda were guided by a few simple
principles. They were not specified a
priori, but emerged in the course of
our work. We share these principles
and examples of their application in
the hope that they will be useful to de-
signers of other large-scale distributed
systems. The principles should not be
applied dogmatically but should be
used to help crystallize thinking during
the design process.

- Workstations have the cycles to
burn. Whenever there is a choice be-
tween performing an operation on a
workstation and performing it on a
central resource, it is preferable to
pick the workstation. This enhances
the scalability of the design because it
lessens the need to increase central
resources as workstations are added.

The only functions performed by
servers in Andrew and Coda are those
critical to security, integrity, or location
of data. Further, there is very little in-
terserver traffic. Pathname translation
is done on clients rather than on serv-
ers in AFS-2, AFS-3, and Coda. The
parallel update protocol in Coda de-
pends on the client to directly update
all AVSG members, rather than updat-
ing one of them and letting it relay the
update.

Cache whenever possible.
Scalability, user mobility, and site au-
tonomy motivate this principle. Cach-
ing reduces contention on centralized
resources and transparently makes
data available wherever it is being
used.

AFS-1 cached files and location in-
formation. AFS-2 also cached directo-
ries, as do AFS-3 and Coda. Caching
is the basis of disconnected operation
in Coda.

Exploit file usage properties.
Knowledge of the nature of file accesses
in real systems allows better design
choices to be made. Files can often be
grouped into a small number of easily
identifiable classes that reflect their ac-
cess and modification patterns. These
class-specific properties provide an op-
portunity for independent optimization
and, hence, improved performance.

Almost one-third of the file references
in a typical Unix system are to temporary
files. Since such files are seldom
shared, Andrew and Coda make them
part of the local name space. The ex-
ecutable files of system programs are of-
ten read but rarely written. AFS-2, AFS-
3, and Coda therefore support read-only
replication of these files to improve per-
formance and availability. Coda's use of
an optimistic replication strategy is
based on the premise that sequential
write sharing of user files is rare.

Minimize systemwide knowledge
and change. In a large distributed sys-
tem, it is difficult to be aware at all times
of the entire state of the system. It is
also difficult to update distributed or rep-
licated data structures consistently. The
scalability of a design is enhanced if it
rarely requires global information to be
monitored or atomically updated.

Workstations in Andrew and Coda
monitor only the status of servers from
which they have cached data. They do
not require any knowledge of the rest of
the system. File location information on
Andrew and Coda servers changes rela-
tively rarely. Caching by Venus, rather
than file location changes in Vice, is
used to deal with movement of users.

Coda integrates server replication (a
relatively heavyweight mechanism) with
caching to improve availability without
losing scalability. Knowledge of a cach-
ing site is confined to servers with call-
backs for the caching site. Coda does

not depend on knowledge of sys-
temwide topology, nor does it incorpo-
rate any algorithms requiring sys-
temwide election or commitment.

Another instance of the application
of this principle is the use of negative
rights. Andrew provides rapid revoca-
tion by modifications of an access list
at a single site rather than by sys-
temwide change of a replicated protec-
tion database.

Trust the fewest possible enti-
tles. A system whose security depends
on the integrity of the fewest possible
entities is more likely to remain secure
as it grows.

Rather than trusting thousands of
workstations, security in Andrew and
Coda is predicated on the integrity of
the much smaller number of Vice serv-
ers. The administrators of Vice need
only ensure the physical security of
these servers and the software they
run. Responsibility for workstation in-
tegrity is delegated to the owner of
each workstation. Andrew and Coda
rely on end-to-end encryption rather
than physical link security.

Batch if possible. Grouping op-
erations (and hence scalability) can im-
prove throughput, although often at the
cost of latency.

The transfer of files in large chunks
in AFS-3 and in their entirety in AFS-1,
AFS-2, and Coda is an instance of the
application of this principle. More effi-
cient network protocols can be used
when data is transferred en masse
rather than as individual pages. In
Coda the second phase of the update
protocol is deferred and batched. La-
tency is not increased in this case be-
cause control can be returned to appli-
cation programs before the completion
of the second phase.

AFS-1 was in use for about a year, from
late 1984 to late 1985. At its peak usage,
there were about 100 workstations and six
servers. Performance was usually accept-
able to about 20 active users per server. But
sometimes a few intense users caused per-
formance to degrade intolerably. The sys-
tem turned out to be difficult to operate and
maintain, especially because it provided

few tools to help system administrators.
The embedding of file location informa-
tion in stub directories made it hard to
move user files between servers.

AFS-2. The design of AFS-2 was based
on our experience with AFS- 1 as well as on
extensive performance analysis.' We re-
tained the strategy of workstations caching

entire files from a collection of dedicated
autonomous servers. But we made many
changes in the realization of this architec-
ture, especially in cache management,
name resolution, communication, and
server process structure.

A fundamental change in AFS-2 was the
manner in which cache coherence was
maintained. Instead of checking with a

May 1990 11

Load units

Figure 3. AFS-2 versus Sun NFS performance under load on identical client,
server, and network hardware. A load unit consists of one client workstation
running an instance of the Andrew benchmark. (Full details of the benchmark
and experimental configuration can be found in Howard et al.,] from which this
graph is adapted.) As the graph clearly indicates, the performance of AFS-2,
even with a cold cache, degrades much more slowly than that of NFS.

server on each open, Venus now assumed
that cache entries were valid unless other-
wise notified. When a workstation cached
a file or directory, the server promised to
notify that workstation before allowing a
modification by any other workstation.
This promise, known as a callback, re-
sulted in a considerable reduction in cache
validation traffic.

Callback made it feasible for clients to
cache directories and to translate path-
names locally. Without callbacks, the
lookup of every component of a pathname
would have generated a cache validation
request. For reasons of integrity, directory
modifications were made directly on serv-
ers, as in AFS-I. Each Vice file or direc-
tory in AFS-2 was identified by a unique
fixed-length file identifier. Location infor-
mation was contained in a slowly changing
volume location database replicated on
each server.

AFS-2 used a single process to service
all clients of a server, thus reducing the
context switching and paging overheads
observed in AFS- 1. A nonpreemptive
lightweight process mechanism supported
concurrency and provided a convenient
programming abstraction on servers and
clients. The RPC (remote procedure call)

mechanism in AFS-2, which was inte-
grated with the lightweight process mecha-
nism, supported a very large number of
active clients and used an optimized bulk-
transfer protocol for file transfer.

Besides the changes we made for per-
formance, we also eliminated AFS-I 's
inflexible mapping of Vice files to server
disk storage. This change was the basis of
a number of mechanisms that improved
system operability. Vice data in AFS-2
was organized in terms of a data-structur-
ing primitive called a volume, a collection
of files forming a partial subtree of the
Vice name space. Volumes were glued
together at mount points to form the com-
plete name space. Venus transparently
recognized and crossed mount points dur-
ing name resolution.

Volumes were usually small enough to
allow many volumes per server disk parti-
tion. Volumes formed the basis of disk
quotas. Each system user was typically
assigned a volume, and each volume was
assigned a quota. Easily moved between
servers by system administrators, a vol-
ume could be used (even for update) while
it was being moved.

Read-only replication of volumes made
it possible to provide increased availabil-

ity for frequently read but rarely updated
files, such as system programs. The backup
and restoration mechanism in AFS-2 also
made use of volume primitives. To back up
a volume, a read-only clone was first made.
Then, an asynchronous mechanism trans-
ferred this frozen snapshot to a staging
machine from which it was dumped to tape.
To handle the common case of accidental
deletion by users, the cloned backup vol-
ume of each user's files was made available
as a read-only subtree of that user's home
directory. Thus, users themselves could
restore files within 24 hours by means of
normal file operations.

AFS-2 was in use at CMU from late 1985
until mid- 1989. Our experience confirmed
that it was indeed an efficient and conve-
nient system to use at large scale. Con-
trolled experiments established that it per-
formed better under load than other con-
temporary file systems.',' Figure 3 presents
the results of one such experiment.

AFS-3. In 1988, work began on a new
version of the Andrew file system called
AFS-3. (For ease of exposition, all changes
made after the AFS-2 release described in
Howard et al.' are described here as pertain-
ing to AFS-3. In reality, the transition from
AFS-2 to AFS-3 was gradual.) The revision
was initiated at CMU and has been contin-
ued since mid-1989 at Transarc Corpora-
tion, a commercial venture involving many
of the original implementers of AFS-3. The
revision was motivated by the need to pro-
vide decentralized system administration,
by the desire to operate over wide area
networks, and by the goal of using industry
standards in the implementation.

AFS-3 supports multiple administrative
cells, each with its own servers, worksta-
tions, system administrators, and users.
Each cell is a completely autonomous
Andrew environment, but a federation of
cells can cooperate in presenting users with
a uniform, seamless filename space. The
ability to decompose a distributed system
into cells is important at large scale because
i t allows administrative responsibility to be
delegated along lines that parallel institu-
tional boundaries. This makes for smooth
and efficient system operation.

The RPC pro.tocol used in AFS-3 pro-
vides good performance across local and
wide area networks. In conjunction with the
cell mechanism, this network capability has
made possible shared access to a common,
nationwide file system, distributed over
nodes such as MIT, the University of Michi-
gan, and Dartmouth, as well as CMU.

Venus has been moved into the Unix

12 COMPUTER

Other contemporary distributed file systems
A testimonial to the importance of

distributed file systems is the large
number of efforts to build such sys-
tems in industry and academia. The
following are some systems currently
in use:

Sun NFS has been widely viewed
as a de facto standard since its intro-
duction in 1985. Portability and
heterogeneity are the dominant con-
siderations in its design. Although
originally developed on Unix, it is now
available for other operating systems
such as MS-DOS.

Apollo Domain is a distributed
workstation environment whose devel-
opment began in the early 1980s.
Since the system was originally in-
tended for a close-knit team of col-

Further reading
Surveys

Satyanarayanan, M., “A Survey of Distrib-
uted File Systems,” in Annual Review of
Computer Science, J.F. Traub et al., eds.,
Annual Reviews, Inc., Palo Alto, Calif.,
1989.

Svobodova, L., “File Servers for Network-
Based Distributed Systems,” ACM Compur-
ing Surveys, Vol. 16, No. 4, Dec. 1984.

Individual systems

Amoeba
van Renesse, R., H. van Staveren, and A S .
Tanenbaum, “The Performance of the
Amoeba Distributed Operating System,”

laborating individuals, scale was not a
dominant design consideration. But large
Apollo installations now exist.

IBM AIX-DS is a collection of distrib-
uted system services for the AIX operat-
ing system, a derivative of System V
Unix. A distributed file system is the pri-
mary component of AIX-DS. Its goals in-
clude strict emulation of Unix semantics,
ability to efficiently support databases,
and ease of administering a wide range
of installation configurations.

AT&T RFS is a distributed file system
developed for System V Unix. Its most
distinctive feature is precise emulation of
local Unix semantics for remote files.

Sprite is an operating system for net-
worked uniprocessor and multiprocessor
workstations, designed at the University
of California at Berkeley. The goals of the

Software Practice and Experience, Vol. 19, No.
3, Mar. 1989.

Apollo Domain
Levine, P., “The Apollo Domain Distributed
File System” in Theory and Practice of Distrib-
uted Operating Systems, Y. Paker, J.-T. Ba-
natre, and M. Bozyigit, eds., NATO AS1 Series,
Springer-Verlag. 1987.

AT6T RFS
Rifkin, A.P., et al., “RFS Architectural Over-
view” Proc. Summer Usenix Conf., Atlanta,
1986, pp. 248-259.

Echo
Hisgen, A., et al., “Availability and Consis-
tency Trade-offs in the Echo Distributed File
System,” Proc. Second IEEE Workshop on

Sprite file system include efficient use
of large main memory caches,
diskless operation, and strict Unix
emulation.

system built by the Free University
and CWI (Mathematics Center) in
Amsterdam. The first version of the
distributed file system used optimistic
concurrency control. The current ver-
sion provides simpler semantics and
has high performance as its primary
objective.

Echo is a distributed file system
currently being implemented at the
System Research Center of Digital
Equipment Corporation. It uses a pri-
mary site replication scheme, with
reelection in case the primary site
fails.

Amoeba is a distributed operating

Workstation Operating Systems, CS Press,
Los Alamitos, Calif., Order No. 2003, Sept.
1989.

IBM AIX-DS
Sauer, C.H., et al., “RT PC Distributed Ser-
vices Overview,” ACM Operating Systems
Review, Vol. 21, No. 3, July 1987,pp. 18-29.

Sprite
Ousterhout, J.K., et al., “The Sprite Network
Operating System,” Computer, Vol. 21, No.
2, Feb. 1988, pp. 23-36.

Sandberg, R., et al., “Design and Implemen-
tation of the Sun Network File System,”
Proc. Summer Usenix Conf., Portland, 1985,

Sun NFS

pp. 119-130.

kernel in order to use the vnode file inter-
cept mechanism from Sun Microsystems,
a de facto industry standard. The change
also makes it possible for Venus to cache
files in large chunks (currently 64 Kbytes)
rather than in their entirety. This feature
reduces file-open latency and allows a
workstation to access files too large to fit
on its local disk cache.

Security in Andrew
A consequence of large scale is that the

casual attitude toward security typical of
close-knit distributed environments is not

acceptable. Andrew provides mechanisms
to enforce security, but we have taken care
to ensure that these mechanisms do not
inhibit legitimate use of the system. Of
course, mechanisms alone cannot guaran-
tee security; an installation also must fol-
low proper administrative and operational
procedures.

A fundamental question is who enforces
security. Rather than trusting thousands of
workstations, Andrew predicates security
on the integrity of the much smaller num-
ber of Vice servers. No user software is
ever run on servers. Workstations may be
owned privately or located in public areas.
Andrew assumes that the hardware and

software on workstations may be modified
in arbitrary ways.

This section summarizes the main as-
pects of security in Andrew, pointing out
the changes that occurred as the system
evolved. These changes have been small
compared to the changes for scalability.
More details on security in Andrew can be
found in an earlier work.3

Protection domain. The protection do-
main in Andrew is composed of users and
groups. A user is an entity, usually a hu-
man, that can authenticate itself to Vice, be
held responsible for its actions, and be
charged for resource consumption. A

May 1990 13

File I[?]- : : authentication server server

Figure 4. Major components and relationships involved in authentication in Andrew. Modifications such as password
changes and additions of new users are made to the master authentication server, which distributes these changes to the
slaves. When a user logs in, a client can obtain authentication tokens on the user’s behalf from any slave authentication
server. The client uses these tokens as needed to establish secure connections to file servers.

group is a set of other groups and users.
Every group is associated with a unique
user called its owner.

AFS-1 and AFS-2 supported group in-
heritance, with a user’s privileges being
the cumulative privileges of all the groups
it belonged to, either directly or indirectly.
Modifications of the protection domain
were made off line by system administra-
tors and typically were reflected in the
system once a day. In AFS-3, modifica-
tions are made directly by users to aprotec-
tion server that immediately reflects the
changes in the system. To simplify the
implementation of the protection server,
the initial release of AFS-3 does not sup-
port group inheritance. This may change in
the future because group inheritance con-
ceptually simplifies management of the
protection domain.

One group is distinguished by the name
System:Administrators. Membership in
this group endows special administrative
privileges, including unrestricted access to
any file in the system. The use of a
System:Administrators group rather than a

pseudo-user (such as “root” in Unix sys-
tems) has the advantage that the actual
identity of the user exercising special privi-
leges is available for use in audit trails.

Authentication. The Andrew RPC
mechanism provides support for secure,
authenticated communication between
mutually suspicious clients and servers, by
using a variant of the Needham and Schroe-
der private key a l g ~ r i t h m . ~ When a user
logs in on a workstation, his or her pass-
word is used to obtain tokens from an
authentication server. These tokens are
saved by Venus and used as needed to
establish secure RPC connections to file
servers on behalf of the user.

The level of indirection provided by
tokens improves transparency and seca-
rity. Venus can establish secure connec-
tions to file servers without users’ having
to supply a password each time a new
server is contacted. Passwords do not have
to be stored in the clear on workstations.
Because tokens typically expire after 24
hours, the period during which lost tokens

can cause damage is limited.
As shown in Figure 4, there are multiple

instances of the authentication server, each
running on a trusted Vice machine. One of
the authentication servers, the master, re-
sponds to updates by users and system
administrators and asynchronously propa-
gates the updates to other servers. The
latter are slaves and only respond to que-
ries. This design provides robustness by
allowing users to log in as long as any slave
or the master is accessible.

For reasons of standardization, the AFS-
3 developers plan to adopt the Kerberos
authentication system.5 Kerberos provides
the functionality of the Andrew authenti-
cation mechanism and closely resembles i t
in design.

Filesystem protection. Andrew uses an
access list mechanism for file protection.
The total rights specified for a user are the
union of the rights specified for the user
and for the groups he or she belongs to.
Access lists are associated with directories
rather than individual files. The reduction

14 COMPUTER

able at large scale. An access list can spec-
ify negative rights. An entry in a negative
rights list indicates denial of the specified

When network
partitions occur,

rights, with denial overriding possession Coia allows data to be
in case of conflict. Negative rights de-
couple the uroblems of rapid revocation updated in each partition
and’ propagation of group membership but detects and confines
information and are particularly valuable conflicting updates

- 1

as soon as possible in a large distributed system.
Although Vice actually enforces protec-

tion on the basis of access lists, Venus after their occurrence*
superimposes an emulation of Unix pro- It also provides
tection semantics. The owner component
of the Unix mode bits on a file indicate
readabilitv. writabilitv. or executabilitv.

mechanisms to help
users recover from

2 , .,
These bits, which indicate what can be such conflicts.
done to the file rather than who can do it,
are set and examined by Venus but ignored
by Vice. The combination of access lists on
directories and mode bits on files has
proved to be an excellent compromise
between protection at fine granularity,
conceptual simplicity, and Unix compati-
bility.

Resource usage. A security violation in
a distributed system can manifest itself as
an unauthorized release or modification of
information or as a denial of resources to
legitimate users. Andrew’s authentication
and protection mechanisms guard against
unauthorized release and modification of
information. Although Andrew controls
server disk usage through a per-volume
quota mechanism, it does not control re-
sources such as network bandwidth and
server CPU cycles. In our experience, the
absence of such controls has not proved to
be a problem. What has been an occasional
problem is the inconvenience to the owner
of a workstation caused by the remote use
of CPU cycles on that workstation. The
paper on security in Andrew3 elaborates on
this issue.

High availability in
Coda

The Coda file system, a descendant of
AFS-2, is substantially more resilient to
server and network failures. The ideal that
Coda strives for is constant data availabil-
ity, allowing a user to continue working
regardless of failures elsewhere in the
system. Coda provides users with the bene-
fits of a shared data repository but allows
them to rely entirely on local resources
when that repository is partially or totally
inaccessible.

A related goal of Coda is to gracefully
integrate the use of portable computers. At
present, users manually copy relevant files
from Vice, use the machine while isolated
from the network, and manually copy
updated files back to Vice upon reconnec-
tion. These users are effectively perform-
ing manual caching of files with write-
back on reconnection. If one views the
disconnection from Vice as a deliberately
induced failure, it is clear that a mecha-
nism for supporting portable machines in
isolation is also a mechanism for fault
tolerance.

By providing the ability to move seam-
lessly between zones of normal and dis-
connected operation, Coda may simplify
the use of cordless network technologies
such as cellular telephone, packet radio, or
infrared communication in distributed file
systems. Although such technologies pro-
vide client mobility, they often have intrin-
sic limitations such as short range, inabil-
ity to operate inside steel-framed build-
ings, or line-of-sight constraints. These
shortcomings are reduced in significance
if clients are capable of temporary autono-
mous operation.

The design of Coda was presented in
detail in a recent paper.6 A large subset of
the design has been implemented, and
work is in progress to complete the im-
plementation. One can sit down at a Coda
workstation today and execute Unix appli-
cations without recompilation or relink-
ing. Execution continues transparently
when contact with a server is lost due to a
crash or network failure. In the absence of
failures, using a Coda workstation feels no

Design overview. The Coda design re-
tains key features of AFS-2 that contribute
to scalability and security:

Clients cache entire files on their local
disks. From the perspective of Coda,
whole-file transfer also offers a degree of
intrinsic resiliency. Once a file is cached
and open at a client, i t is immune to server
and network failures. Caching on local
disks is also consistent with our goal of
supporting portable machines.

Cache coherence is maintained by the
use of callbacks.

Clients dynamically find files on serv-
ers and cache location information.

Token-based authentication and end-
to-end encryption are used as the basis of
security.

Coda provides failure resiliency through
two distinct mechanisms. It uses server
replication, or the storing of copies of files
at multiple servers, to provide a highly
available shared storage repository. When
no server can be contacted, the client re-
sorts to disconnected operation, a mode of
execution in which the client relies solely
on cached data. Neither mechanism is
adequate alone. While server replication
increases the availability of all shared data,
it does not help if all servers fail or if all are
inaccessible due to a network failure adja-
cent to a client. On the other hand, perma-
nent disconnected operation is infeasible.
The disk storage capacity of a client is a
small fraction of the total shared data.
Permanent disconnected operation is also
inconsistent with the Andrew model of
treating each client’s disk merely as a
cache. Key advantages of the Andrew
architecture, namely mobility and a user’s
ability to treat any workstation as his or her
own, are lost.

From a user’s perspective, transitions
between these complementary mecha-
nisms are seamless. A client relies on
server replication as long as it remains in
contact with at least one server. It treats
disconnected operation as a measure of last
resort and reverts to normal operation at
the earliest opportunity. A portable client
that is isolated from the network is effec-
tively operating in disconnected mode.

When network partitions occur, Coda
allows data to be updated in each partition
but detects and confines conflicting up-
dates as soon as possible after their occur-
rence. It also provides mechanisms to help

May 1990 15

Client 2 (s t a t u s) L Fetch (PS = 1) Server 2
I

Server 3

Figure 5. Servicing a cache miss in Coda: the events that follow from a cache
miss at the client. Both data and status are fetched from Server 1, which is the
preferred server (PS). Only status is fetched from Server 2 and Server 3. The
calls to all three servers occur in parallel.

users recover from such conflicts. This
strategy is optimistic, in contrast to a pes-
sirnistic strategy that would preserve strict
consistency by disallowing updates in all
but one partition. We chose an optimistic
strategy for two reasons: First, we saw no
clean way to support disconnected opera-

tion with a pessimistic strategy. Second, it
is widely believed that sequential write
sharing between users is relatively infre-
quent in Unix environments, so conflicting
updates are likely to be rare.

Coda provides a scalable and highly
available approximation of Unix seman-

COP1 I s t a t u s .)
Server 2 Client COP2 (update set)

Figure 6. A store operation in Coda: the two phases of the Coda update protocol
In the first phase, COP1, the three servers are sent new status and data in paral.
lel. In the later asynchronous phase, COP2, the update set is sent to these serv-
ers. COP2 also occurs in parallel and can be piggybacked on the next COP1 to
these servers.

tics. We arrived at this semantics on the
basis of our positive experience with AFS-
2 . In the absence of failures, Coda and
AFS-2 semantics are identical. On open,
the latest copy of a file in the system is
cached from Vice. Read and write opera-
tions are made to the cached copy. On
close, the modified file is propagated to
Vice. Future opens anywhere in the system
will see the new copy of the file. In the
presence of failures, Coda and AFS-2
semantics differ. An open or close in AFS-
2 would fail if the server responsible for
the file was inaccessible. In Coda, an open
fails only on a cache miss during discon-
nected operation or if a conflict is detected.
A close fails only if a conflict is detected.

Server replication. The unit of replica-
tion in Coda is a volume. A replicated
volume consists of several physical vol-
umes, or replicas, that are managed as one
logical volume by the system. Individual
replicas are not normally visible to users.
The set of servers with replicas ofavolume
constitutes its volume storage group
(VSG). The degree of replication and the
identity of the replication sites are speci-
fied when a volume is created. Although
these parameters can be changed later, we
do not anticipate such changes to be fre-
quent. For every volume from which it has
cached data, Venus keeps track of the
subset of the VSG that is currently acces-
sible. This subset is called the accessible
VSG (AVSG). Different clients may have
different AVSGs for the same volume at a
given instant. Venus performs periodic
probes to detect shrinking or enlargement
of the AVSGs from which it has cached
data. These probes are relatively infre-
quent, occurring once every 10 minutes in
our current implementation.

Coda integrates server replication with
caching, using a variant of the read-one,
write-all strategy. This variant can be
characterized as read-one-data, read-all-
status, write-all. In the common case of a
cache hit on valid data, Venus avoids con-
tacting the servers altogether. When ser-
vicing a cache miss, Venus obtains data
from one member of its AVSG, known as
thepreferredserver. The PS can be chosen
at random or on the basis of performance
criteria such as physical proximity, server
load, or server CPU power. Although data
is transferred only from one server, Venus
contacts the other servers to collect their
versions and other status information.
Venus uses this information to check
whether the accessible replicas are equiva-
lent. If the replicas are in conflict, the

.

16 COMPUTER

system call that triggered the cache miss is
aborted. If the replicas are not in conflict
but some replicas are stale, the AVSG is
notified asynchronously that a refresh is
necessary. In the special case where the
data on the PS is stale, a new PS is selected
and the fetch is repeated. The message
exchange in the normal case, where there is
no conflict and the PS has the latest copy of
the data, is illustrated in Figure 5. A call-
back is established with the PS as a side-
effect of successfully fetching the data.

When a file is closed after modification,
it is transferred to all members of the
AVSG. This approach is simple to imple-
ment and maximizes the probability that
every replication site has current data at all
times. Server CPU load is minimized be-
cause the burden of data propagation is on
the client rather than the servers. This in
turn improves scalability, since the server
CPU is the bottleneck in many distributed
file systems. Operations that update direc-
tories, such as creating a new directory or
removing a file, are also written through to
all AVSG members.

Because its replication scheme is opti-
mistic, Coda checks for existing conflicts
on each server operation. The update
protocol also guarantees eventual detec-
tion of new conflicts caused by the update.
This protocol consists of two phases,
COPl and COP2, where COP stands for
Coda optimistic protocol. The first phase
performs the semantic part of the opera-
tion, such as transferring file contents,
making a directory entry, or changing an
access list. Each server verifies that its
copy does not conflict with the client’s
copy before performing the update. The
second phase distributes to the servers a
data structure called the update set, which
summarizes the client’s knowledge of who
performed the COPl operation. The up-
date set maintains the version information
used in conflict detection. Figure 6 illus-
trates the message exchange in a store
operation (which corresponds to a file
close).

Two protocol optimizations improve
performance: First, latency is reduced by
Venus’s returning control to the user after
completion of COPl and performing
COP2 asynchronously. Second, network
and server CPU loads can be reduced by
Venus’s piggybacking the asynchronous
COP2 messages on subsequent COPl calls
to the same VSG.

At present, a server performs no explicit
remote actions upon recovery from a crash.
Rather, i t depends on clients to notify it of
stale or conflicting data. Although this

lazy strategy does not violate Coda’s.con-
sistency guarantees, it does increase the
chances of a future conflict. A better ap-
proach, which we plan to adopt in the
future, is for a recovering server to contact
other servers to bring itself up to date.

Each server operation in Coda typically
involves multiple servers. If the operation
were carried out sequentially, latency
would increase significantly. Venus there-
fore communicates with replication sites
in parallel, using a parallel RPC mecha-
nism. This mechanism has been extended
to use hardware multicast support, if avail-
able, to reduce the latency and network
load caused by shipping large files to
multiple sites. Shipping a large file to three
servers in our current implementation typi-
cally takes about 10 percent longer than
shipping it to one server.

Operation latency is usually a major
concern with replication schemes, but
server replication in Coda has worked well.
Controlled experiments on identical client
and server hardware show that under light
loads Coda’s performance is within five
percent of the performance of Andrew’s
current release. Thus, the cost of replica-
tion is primarily the storage cost for addi-
tional replicas at the servers. The current
implementation of Coda does not perform
quite as well under heavy load. Our mea-
surements indicate specific areas for im-
provement, and we are confident that these
changes will result in an implementation
with significantly better performance un-
der load.

Disconnected operation. Disconnected
operation begins at a Coda workstation
when no member of a VSG is accessible.
Clients view it as a temporary state and
revert to normal operation at the earliest
opportunity. A client may be operating in
disconnected mode with respect to some
volumes but not others. Disconnected
operation is transparent to a user unless a
cache miss occurs. A cache miss normally
aborts the system call that triggered the
reference, but i t is possible to arrange for
such system calls to block. Return to nor-
mal operation is also transparent, unless a
conflict is detected.

To reduce the chances of a cache miss
during disconnected operation, Coda al-
lows a user to specify a prioritized list of
files and directories that Venus should
strive to retain in the cache. Objects of the
highest priority level are “sticky”and must
be retained at all times. As long as the local
disk is large enough to accommodate all
sticky files and directories, the user can

always access them. Since it is often diffi-
cult to know exactly what file references
are generated by a certain set of high-level
user actions, Coda provides the ability for
a user to bracket a sequence of high-level
actions and for Venus to note the file refer-
ences generated during these actions. The
implementer of an application can also
provide a list of files that should be made
sticky for the application to work when
disconnected.

Disconnected operation with respect to
aparticular volume ends when Venus rees-
tablishes connection with any member of
the volume’s VSG. Reconnection results
from a successful probe--either one of
Venus’s periodic probes or one manually
induced by a user-level command. The
transition from disconnected operation
invokes a process of reintegration. For
each cached file or directory that has been
created, deleted, or modified on the client
during disconnected operation, Venus
executes a sequence of update operations
to make AVSG replicas identical to the
cached copy. Reintegration proceeds top-
down, from the root to the leaves of modi-
fied subtrees.

Update operations during reintegration
may fail for one of two reasons. First, there
may be no authentication tokens that Ve-
nus can use to communicate securely with
AVSG members. Users whose tokens
expire during disconnected operation may
forestall reintegration until they have re-
acquired valid tokens to minimize this
possibility. Second, conflicts may be de-
tected. Given our model in which servers
rather than clients are dependable storage
repositories, we felt that the proper ap-
proach to handling both of these situations
was to find a temporary home on servers
for the data in question and to rely on a user
to resolve the problem later.

The temporary repository is realized as a
covolume for every replica of every vol-
ume in Coda. Covolumes are similar in
spirit to lost+found directories in Unix.
They have a flat name space derived from
the original low-level identifiers of the
objects they contain. Covolumes are not
directly visible to users but are accessed
indirectly through a repair tool as de-
scribed in the next section. Migrate is the
operation that transfers a file or directory
from a workstation to a covolume. Having
a covolume per replica allows us to per-
form migration immediately upon reinte-
gration failure rather than waiting for
connection to a particular site. The storage
overhead of this approach is usually small
since a covolume is almost always empty.

May 1990 17

Mechanisms for building distributed file systems

Although there is considerable diver-
sity in the manner in which distributed
file systems are put together, all the cur-
rent ones are built from a surprisingly
small number of basic mechanisms.
This sidebar presents the most impor-
tant of these mechanisms and examples
of how different systems have used
them.

- Mount points. The mount mecha-
nism in Unix enables the gluing together
of filename spaces to provide applica-
tions with a single, seamless, hierarchi-
cally structured name space. In a dis-
tributed Unix file system, the mount
mechanism provides a natural hook on
which to hang a remote subtree.

There are two different ways to use
the mechanism. The simpler approach
is used by systems such as Sun NFS, in
which each client individually mounts
subtrees from servers. Although this ap-
proach is easier to implement, it has the
disadvantage that the shared name
space may not be identical at all clients.
Further, movement of files from one
server to another requires each client to
unmount and remount the affected sub-
tree. In practice, systems that use this
approach have usually had to provide
auxiliary mechanisms (such as the Yel-
low Pages and Automounter in Sun
NFS) to automate and centralize
mounts.

mount information in the data stored in
the file servers. Andrew and Coda, for
example, use mount points embedded
in volumes. Sprite uses remote links for
a similar purpose. This approach makes
it relatively simple to ensure that all
clients see the same shared filename
space at all times.

The alternative approach is to embed

Client caching. The caching of
data at clients is undoubtedly the archi-
tectural feature that contributes most to
performance in a distributed file system.
Every distributed file system in serious
use today uses some form of caching.
Even AT&T's RFS, which initially
avoided caching in the interests of strict
Unix emulation, now uses it. In most
systems, clients maintain the cache in
their main memory. Andrew and Coda,
in contrast, cache on the local disk, with
a further level of caching in main mem-
ory.

A key issue in caching is the size of
the cached units of data. Most distrib-

AFS-2 cache entire files. AFS-3 and
most other file systems cache portions of
a file.

Cache validation can be done in two
ways. One approach is for the client to
contact the server for validation. The al-
ternative approach, used in AFS-2, AFS-
3, Coda, AIX-DS, and Echo, is to have
the server notify clients when cached
data is about to be rendered stale. Al-
though more complex to implement, the
latter approach can produce substantial
reductions in client-server traffic.

Existing systems use a wide spectrum
of approaches in propagating modifica-
tions from client to server. AIX-DS usu-
ally propagates changes to the server
only when the file is explicitly flushed.
Andrew and Coda propagate changes
when a file is closed after writing. Sprite
delays propagation until dirty cache
pages have to be reclaimed or for a
maximum of 30 seconds. Deferred
propagation improves performance since
data is often overwritten, but it increases
the possibility of server data being stale
due to a client crash.

- Hints. In the context of distributed
systems, a hint is a piece of information
that can substantially improve perform-
ance if correct but has no semantically
negative consequence if erroneous. For
maximum performance benefit, a hint
should nearly always be correct. By
caching hints, one can obtain substantial
performance benefits without incurring
the cost of maintaining cache consis-
tency. Only information that is self-vali-
dating upon use is amenable to this strat-
egy. One cannot, for instance, treat file
data as a hint because the use of a
cached copy of the data will not reveal
whether it is current or stale.

tion information in distributed file sys-
tems. Sprite, for instance, caches map-
pings of pathname prefixes to servers.
Similarly, Andrew and Coda cache indi-
vidual entries from the volume location
database. Apollo Domain uses a more
elaborate location scheme incorporating
a hint manager.

Hints are most often used for file loca-

Bulk data transfer. Network commu-
nication overhead caused by protocol
processing typically accounts for a major
portion of the latency in a distributed file
system. Transferring data in bulk reduces
this overhead by amortizing fixed proto-
col overheads over many consecutive

uted file systems cache individual pages
of files. Coda, Amoeba, AFS-1, and

pages of a file. For effectiveness, bulk
transfer protocols depend on spatial lo-

cality of reference within files.
The degree to which bulk transfer is

exploited varies from system to sys-
tem. Amoeba, Andrew, and Coda are
critically dependent on it. Sun NFS and
Sprite exploit bulk transfer by using
very large packet sizes, typically 8 kilo-
bytes. Bulk transfer protocols will in-
crease in importance as distributed file
systems spread across networks of
wider geographic area and thus have
greater inherent latency.

. Encryption. Encryption is an indis-
pensable building block for enforcing
security in a distributed system. It is
used for remote authentication and for
preventing unauthorized release and
modification of data transmissions. The
national standard DES (data encryp-
tion standard) is the most commonly
used form of private-key encryption.
The seminal work of Needham and
Schroeder on the use of encryption for
authentication is the basis of all current
security mechanisms in distributed file
systems.

Authentication can be performed
with private or public keys. In the pri-
vate-key schemes used by Kerberos
and Andrew, a physically secure au-
thentication server maintains a list of
user passwords in the clear. In con-
trast, the public-key scheme used by
Sun NFS maintains a publicly readable
database of authentication keys en-
crypted with user passwords. The latter
approach has the attractive character-
istic that physical security of the au-
thentication server is unnecessary. Its
major drawback is that public-key en-
cryption is computationally more ex-
pensive.

Replication. Replication of data at
multiple servers is the primary mecha-
nism for providing high availability. The
more recent file systems such as Coda
and Echo provide read-write replication
of data. Amoeba supports read-write
replication at the directory level be-
cause files are immutable in that sys-
tem. Although read-write replication is
well understood theoretically, little ex-
perience of its use exists as yet.

More experience has been gathered
with read-only data replication, which
is supported by systems such as Sun
NFS and Andrew. Though suitable only
for files that change relatively rarely, it
is valuable because many critical files
(such as system binaries) possess this
property.

COMPUTER 18

hroughout the evolution of the
Andrelr and CO& filc systems.

We are currently in the midst of imple-
menting disconnected operdtion. Although
we are confident of our ability to support
short-term disconnected operation (for a
few minutes or hours), it remains to be seen

The general
problem of sharing

whether long-term disconnected operation information effectively
in large distributed (for days or weeks) is feasible. Our con-

cerns center on the overall size of the
working set and on the predictive power of
our caching strategies. Our own experi-

systems is far from
being solved.

The next decade
poses many

ence, and that of others, suggests that a
cache of several tens of megabytes should
be adeouate for a tvuical disconnection of <.

less than a day. Less obvious is whether challenges and promises
any anticipatory caching strategy can, with to be a fertile and

exciting period a reasonable cache size, provide the near-
uerfect hit rates reauired for long-term
disconnected operation.

Conflict resolution. When a conflict is
detected, Coda first attempts to resolve it
automatically. Since Unix files are un-
typed byte streams, there is no information
to automate their resolution. A directory,
on the other hand, is an object whose
semantics is completely known and whose
resolution can often be automated. For
example, partitioned creation of uniquely
named files in the same directory can be
handled automatically by selectively re-
playing the missing creates. If automated
resolution is not possible, Coda marks all
accessible replicas of the object inconsis-
tent and moves them to their respective
covolumes. This ensures damage contain-
ment because normal operations on these
replicas will subsequently fail.

Coda provides a repair tool to assist
users in manually resolving conflicts. It
uses a special interface to Venus so that
requests from the tool are distinguishable
from normal file system requests. This
enables the tool to overwrite inconsistent
files and to perform directory operations
on inconsistent directories. The tool has
evolved along with the rest of our system.
Three generations of the tool are described
here: the tool for the currently imple-
mented system, the one we are working on
at present, and a successor that will incor-
porate the current wish list.

In the first-generation tool, inconsistent
files and directories are marked in conflict
but are not moved to covolumes. Discon-
nected operation is not supported because
there is nowhere to migrate objects to.
When the tool is invoked on a given object,
it mounts the accessible replicas of the
object’s volume in a scratch area of the
name space. The user can then use normal
Unix applications to inspect the replicas.
The replicas are mounted in read-only

for researchers in
this area.

mode so that the user cannot inadvertently
alter anything. When the user has decided
on a fix (such as selecting the version in one
of the replicas to be the new permanent
one), the tool performs the fix and cleans
up the workspace.

The second-generation tool supports
disconnected operation because it knows
about covolumes. Inconsistent objects are
immediately moved to the associated covo-
lume when the inconsistency is detected.
When the tool is invoked, it constructs a
temporary workspace and mounts, read-
only, the covolumes as well as the replicas
of the object. As before, the user can navi-
gate through the replicas. However, names
of inconsistent objects now correspond to
objects in the associated covolumes. The
tool applies the fix and cleans up the work-
space as the first-generation tool does.

The primary refinement provided by the
third-generation tool will be a considerably
simplified user interface. Venus, in con-
junction with the tool, will present the
illusion of an in-place “explosion” of in-
consistent objects into their distinct ver-
sions. Invocation of the tool will put Venus
in amode whereby inconsistent objects can
be viewed within the existing name space.
In this mode, Venus will map an inconsis-
tent file or directory into a read-only direc-
tory with the same name as the original.
This directory will be populated with en-
tries translated by Venus to the versions in
the various covolumes. The tool will
handle the fix phase of the repair in the
same way as the second-generation tool.

1 the underlying model of computa-
tion has remained unchanged. A small col-
lection of trusted servers jointly provides a
shared data repository for a much larger
number of untrusted workstations. The
system design facilitates incremental
growth by the addition of users and work-
stations. The security of the system is not
contingent upon the integrity of the work-
stations or of the network.

The problems of scalability, security,
and availability will continue to be impor-
tant as distributed file systems grow in
size. In addition, three other problems will
be of fundamental importance to the
broader goal of effective data sharing in
large distributed systems. These are the
problems of heterogeneity, access to di-
verse types of data, and rapid search.

As a distributed system grows, it tends
to become more heterogeneous. Coping
with heterogeneity is inherently difficult
because of the presence of multiple com-
putational environments, each with its
own notions of file naming and functional-
ity. Since few general principles are appli-
cable, the idiosyncrasies of each new sys-
tem have to be accommodated by ad hoc
mechanisms. Unfortunately, heterogene-
ity cannot be ignored since it is likely to be
a chronic problem.

Alternative models of data are likely to
become more important in the future. Re-
lational databases are already in wide-
spread use in certain application domains.
Speech, music, images, and video are
examples of other forms of data that the
repositories of the future will have to store
and retrieve. We presently have little
knowledge of how to share such diverse
types of data in large-scale distributed sys-
tems.

Finding data in a large distributed file
system is already difficult. As distributed
storage repositories grow larger and store
more diverse types of data, the problem of
searching for relevant information will
become acute. This is another area where
we have barely scratched the surface.

In conclusion, we have made much
progress in the design and implementation
of distributed file systems over the last
decade. Andrew and Coda embody many
of the key advances made during this pe-
riod. But the general problem of sharing
information effectively in large distrib-
uted systems is far from being solved. The
next decade poses many challenges and
promises to be a fertile and exciting period
for researchers in this area.

20 COMPUTER

Acknowledgments
The Andrew file system was built by the File System Group of the In-

formation Technology Center at Carnegie Mellon University. The mem-
bership of this group over time has included Ted Anderson, Sailesh
Chutani, John Howard, Michael Kazar, Sherri Menees Nichols, David
Nichols, Mahadev Satyanarayanan, Robert Sidebotham, Michael West,
and Edward Zayas. Contributions to the early design of Andrew were also
made by David Gifford and Alfred Spector.

Coda is being built in the School of Computer Science at Camegie
Mellon University. Contributors to Coda include James Kistler, Puneet
Kumar, Maria Okasaki, Mahadev Satyanarayanan, Ellen Siegel, Walter
Smith, and David Steere.

James Kistler assisted in writing this article.
This research was supported by the National Science Foundation

(contract No. CCR-8657907), Defense Advanced Research Projects
Agency (order No. 4976, contract No. F33615-87-C-1499), IBM Corpo-
ration (faculty development award, graduate fellowship, and the Andrew
project), and Digital Equipment Corporation (equipment grant). The
views and conclusions in this article are those of the author and do not
represent the official policies of the funding agencies or of Carnegie
Mellon University.

References
1. J.H. Howard et al., “Scale and Performance in a Distributed File

System,” ACM Trans. Computer Systems, Vol. 6, No. 1, Feb. 1988,
pp. 51-81.

2. M.N. Nelson, B.B. Welch, and J.K. Ousterhout, “Caching in the
Sprite Network File System,” ACM Trans. Computer Systems, Vol.
6 , No. 1, Feb. 1988, pp. 134-154.

3. M. Satyanarayanan, “Integrating Security in a Large Distributed
System,” ACM Trans. Computer Systems, Vol. 7, No. 3, Aug. 1989,
pp. 247-280.

4. R.M Needham and M.D. Schroeder, “Using Encryption for Authen-
tication in Large Networks of Computers,” Comm. ACM, Vol. 21, No.
12, Dec. 1978, pp. 993-998.

5. J.G. Steiner, C. Neumann, and J.I. Schiller, “Kerberos: An Authen-
tication Service for Open Network Systems,” Proc. Usenix Conf,,
Dallas, Texas, Feb. 1988, pp. 191-202.

6. M. Satyanarayanan et al., “Coda: A Highly Available File System for
a Distributed Workstation Environment,” IEEE Trans. Computers,
Vol. 39, No. 4, Apr. 1990, pp. 447-459.

Mahadev Satyanarayanan is an associate professor of computer sci-
ence at Carnegie Mellon University. His research addresses the general
problem of sharing access to information in large-scale distributed sys-
tems. He was one of the principal architects and implementers of the
Andrew file system and currently leads the Coda project. His work on
Scylla explored access to relational databases in a distributed workstation
environment. His previous research included the design of the CMU-CFS
file system, measurement and analysis of file usage data, and the model-
ing of storage systems.

Satyanarayanan received the PhD in computer science from Camegie
Mellon in 1983, after receiving a bachelor’s degree in electrical engineer-
ing and a master’s degree in computer science from the Indian Institute
of Technology, Madras. He is a member of the IEEE, the IEEE Computer
Society, ACM, and Sigma Xi, and has been a consultant to industry and
government. He was named a Presidential Young Investigator by the Na-
tional Science Foundation in 1987.

Readers can write to Satyanarayanan at the School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA 1521 3-3890.

M a y 1990

At GTE’s Computer and Intelligent Systems Laboratory, we
are creating opportunities to apply new ideas to research and
development projects for improved information and telecorn
munication systems. By expanding our scope and responsi-
bility, we can better support GTE‘s telecommunications
businesses. And our activities create challenges for indwidu-
als at the MS/PhDlevel in Computer Science. Join us as we
continue to make history in telecommunications technology.
Our present areas of interest include:

Distributed Operating
Systems

We are currently growing a group that is conducting
research in distributed operating systems and dis-
tributed transaction systems. These systems will unify
a network of cooperating autonomous, heterogeneous
processors and replicated databases. Issues concern
not only the tradeoffs between network and distributed
operating systems, but the interoperability of software
components implemented on a mix of platforms and
languages; included are such topics as transport,
access, application, distributed control and control
migration. Research is conducted using synthesis and
prototyping with emphasis on architectural and appli-
cability issues. We are looking for individuals at all lev-
els of experience, however, we require a PhD in
Computer Science along with a familiarity with the var-
ious current approaches to the design of distributed
systems. Significant experience with at least one such
system is highly desirable.

Intelligent Database Systems
Our Distributed Object Management (DOM) project is con-
ducting research into interconnectivity and intelligent inter-
operability among heterogeneous computer systems. We
require PhD-level researchers at all levels with a minimum of
2 years’experience in databases, operating systems, dis-
tributed systems or artificial intelligence.

Research Scientist
Information Retrievd

We are extending the state-of-theart in Information
Retrieval systems, primarily through the development
of a multi-media system that includes full-text retrieval,
graphics, pictures and other structurable information;
algorithms and their implementation for document
modeling; and the user-interface to the retrieval s y s
tem itself. Research prototypes will be developed in C
and X-windows on multiple operating system plat-
forms. We require a minimum of a MS in Computer
Science, and 3 years’ programming with C under vari-
ous operating systems such as VMS, UNIX, MSDOS,
and Macintosh.
GTE Laboratories offers attractive facilities located in a
quiet, wooded setting just outside of Boston, as well as
a highly competitive salary and benefits package. We
invite you to send a resume to Vanessa Stern, GTE
Laboratories, Inc., Box IEEEC590,40 Sylvan Road,
Waltham, MA 02254. An equal opportunity employer,
M/F/wV.

[=q Laboratories
THE POWER IS ON

