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or the users of a distributed system 
to collaborate effectively, the abil- 
ity to share dataeasily is vital. Over 

the last decade, distributed file systems 
based on the Unix model have been the 
subject of growing attention. They are now 
widely considered an effective means of 
sharing data in academic and research en- 
vironments. This article presents a sum- 

Our design has evolved over time, re- 

Andrew file system, called AFS-1, AFS-2, 
sulting in three distinct versions of the 

and AFS-3. In this article “Andrew file 
system” or “Andrew” will be used as a 
collective term referring to all three ver- 

F 
Andrew and Coda are 
distributed Unix 
systems that embody 
many O f  the recent sions. 

mary and historical perspective of work 
done by my colleagues, students, and I in 
designing and implementing such systems 
at Carnegie Mellon University. 

This work began in 1983 in the context 
of Andrew, a joint project of CMU and 
IBM to develop a state-of-the-art comput- 
ing facility for education and research at 
CMU. The project envisioned a dramatic 
increase in computing power made pos- 
sible by the widespread deployment of 
powerful personal workstations. Our char- 
ter was to develop a mechanism that would 
enable the users of these workstations to 
collaborate and share data effectively. We 
decided to build a distributed file system 
for this purpose because i t  would provide 
the right balance between functionality 
and complexity for our usage environment. 

It was clear from the outset that our 
distributed file system had to possess two 
critical attributes: It had to scale well, so 
that the system could grow to its antici- 

advances in solving 
the problem of data 

sharing in large, 
physically dispersed 

workstation 
environments. 

pated final size of over 5,000 workstations. 
It also had to be secure, so that users could 
be confident of the privacy of their data. 
Neither of these attributes is likely to be 
present in a design by accident, nor can it 
be added as an afterthought. Rather, each 
attribute must be treated as a fundamental 
constraint and given careful attention dur- 

As our user community became more 
dependent on Andrew, the availability of 
data in i t  became more important. Today, a 
single failure in Andrew can seriously 
inconvenience many users for significant 
periods. To address this problem, we be- 
gan the design of an experimental file 
system called Coda in 1987. Intended for 
the same computing environment as An- 
drew, Coda retains Andrew’s scalability 
and security characteristics while provid- 
ing much higher availability. 

The Andrew 
architecture 

The Andrew computing paradigm is a 
synthesis of the best features of personal 
computing and timesharing. It combines 
the flexible and visually rich user interface 
available in personal computing with the 
ease of information exchange typical of 
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Figure 1. A high-level view of the An- 
drew architecture. The structure la- 
beled “Vice” is a collection of trusted 
file servers and untrusted networks. 
The nodes labeled “W” are private or 
public workstations, or timesharing 
systems. Software in each such node 
makes the shared files in Vice appear 
as an integral part of that node’s file 
system. 

Figure 2. File system view at a work- 
station: how the shared files in Vice 
appear to a user. The subtree under 
the directory labeled “afs” is identical 
at all workstations. The other directo- 
ries are local to each workstation. 
Symbolic links can be used to make lo- 
cal directories correspond to directo- 
ries in Vice. 

timesharing. A conceptual view of this 
model is shown in Figure 1. 

The large, amoeba-like structure in the 
middle, called Vice, is the information- 
sharing backbone of the system. Although 
represented as a single entity, it actually 
consists of a collection of dedicated file 
servers and a complex local area network. 

User computing cycles are provided by 
workstations running the Unix operating 
system. 

Data sharing in Andrew is supported by 
a distributed file system that appears as a 
single large subtree of the local file system 
on each workstation. The only files outside 
the shared subtree are temporary files and 
files essential for workstation initializa- 
tion. A process called Venus, running on 
each workstation, mediates shared file 
access. Venus finds files in Vice, caches 
them locally, and performs emulation of 
Unix file system semantics. Both Vice and 
Venus are invisible to workstation pro- 
cesses, which only see a Unix file system, 
one subtree of which is identical on all 
workstations. Processes on two different 
workstations can read and write files in this 
subtree just as if they were running on a 
single timesharing system. Figure 2 de- 
picts the file system view seen by a work- 
station user. 

Our experience with the Andrew archi- 
tecture over the past six years has been 
positive. It is simple and easily understood 
by naive users, and it permits efficient 
implementation. It also offers a number of 
benefits that are particularly valuable on a 
large scale: 

9 Data sharing is simplified. A worksta- 
tion with a small disk can potentially ac- 
cess any file in Andrew by name. Since the 
file system is location transparent, users do 
not have to remember the machines on 
which files are currently located or where 
files were created. System administrators 
can move files from one server to another 
without inconveniencing users, who are 
completely unaware of such a move. 

User mobility is supported. A user can 
walk to any workstation in the system and 
access any file in the shared name space. A 
user’s workstation is personal only in the 
sense that he owns it. 

9 System administration is easier. Op- 
erations staff can focus on the relatively 
small number of servers, ignoring the more 
numerous and physically dispersed clients. 
Adding a new workstation involves merely 
connecting i t  to the network and assigning 
i t  an address. 

Better security ispossible. The servers 
in Vice are physically secure and run 
trusted system software. No user programs 
are executed on servers. Encryption-based 
authentication and transmission are used 
to enforce the security of server-worksta- 
tion communication. Although individuals 
may tamper with the hardware and soft- 
ware on their workstations, their malicious 

actions cannot affect users at other work- 
stations. 

Client autonomy is improved. Work- 
stations can be turned off or physically 
relocated at any time without inconve- 
niencing other users. Backup is needed 
only on the servers, since workstation disks 
are used merely as caches. 

Scalability in Andrew 

A scalable distributed system is one that 
can easily cope with the addition of users 
and sites, its growth involving minimal 
expense, performance degradation, and 
administrative complexity. We have 
achieved these goals in Andrew by reduc- 
ing static bindings to a bare minimum and 
by maximizing the number of active clients 
that can be supported by a server. The 
following sections describe the evolution 
of our design strategies for scalability in 
Andrew. 

AFS-1. AFS-1 was a prototype with the 
primary functions of validating the An- 
drew file system architecture and provid- 
ing rapid feedback on key design deci- 
sions. Each server contained a local file 
system mirroring the structure of the 
shared file system. Vice file status infor- 
mation, such as access lists, was stored in 
shadow directories. If a file was not on a 
server, the search for its name would end in 
a stub directory that identified the server 
containing that file. Since server processes 
could not share memory, their only means 
of sharing data structures was via the local 
file system. 

Clients cached pathname prefix infor- 
mation and used it to direct file requests to 
appropriate servers. The Vice-Venus inter- 
face named files by their full pathnames. 
There was no notion of a low-level name, 
such as the inode in Unix. 

Venus used a pessimistic approach to 
maintaining cache coherence. All cached 
copies of files were considered suspect. 
Before using a cached file, Venus would 
contact Vice to verify that it had the latest 
version. Each open of a file thus resulted in 
at least one interaction with a server, even 
if the file was already in the cache and up 
to date. 

For the most part, we were pleased with 
AFS-1. Almost every application was able 
to use Vice files without recompilation or 
relinking. There were minor areas of in- 
compatibility with standard Unix seman- 
tics, but these were never serious enough to 
discourage users. 
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Design principles from Andrew and Coda 
The design choices of Andrew and 

Coda were guided by a few simple 
principles. They were not specified a 
priori, but emerged in the course of 
our work. We share these principles 
and examples of their application in 
the hope that they will be useful to de- 
signers of other large-scale distributed 
systems. The principles should not be 
applied dogmatically but should be 
used to help crystallize thinking during 
the design process. 

- Workstations have the cycles to 
burn. Whenever there is a choice be- 
tween performing an operation on a 
workstation and performing it on a 
central resource, it is preferable to 
pick the workstation. This enhances 
the scalability of the design because it 
lessens the need to increase central 
resources as workstations are added. 

The only functions performed by 
servers in Andrew and Coda are those 
critical to security, integrity, or location 
of data. Further, there is very little in- 
terserver traffic. Pathname translation 
is done on clients rather than on serv- 
ers in AFS-2, AFS-3, and Coda. The 
parallel update protocol in Coda de- 
pends on the client to directly update 
all AVSG members, rather than updat- 
ing one of them and letting it relay the 
update. 

Cache whenever possible. 
Scalability, user mobility, and site au- 
tonomy motivate this principle. Cach- 
ing reduces contention on centralized 
resources and transparently makes 
data available wherever it is being 
used. 

AFS-1 cached files and location in- 
formation. AFS-2 also cached directo- 
ries, as do AFS-3 and Coda. Caching 
is the basis of disconnected operation 
in Coda. 

Exploit file usage properties. 
Knowledge of the nature of file accesses 
in real systems allows better design 
choices to be made. Files can often be 
grouped into a small number of easily 
identifiable classes that reflect their ac- 
cess and modification patterns. These 
class-specific properties provide an op- 
portunity for independent optimization 
and, hence, improved performance. 

Almost one-third of the file references 
in a typical Unix system are to temporary 
files. Since such files are seldom 
shared, Andrew and Coda make them 
part of the local name space. The ex- 
ecutable files of system programs are of- 
ten read but rarely written. AFS-2, AFS- 
3, and Coda therefore support read-only 
replication of these files to improve per- 
formance and availability. Coda's use of 
an optimistic replication strategy is 
based on the premise that sequential 
write sharing of user files is rare. 

Minimize systemwide knowledge 
and change. In a large distributed sys- 
tem, it is difficult to be aware at all times 
of the entire state of the system. It is 
also difficult to update distributed or rep- 
licated data structures consistently. The 
scalability of a design is enhanced if it 
rarely requires global information to be 
monitored or atomically updated. 

Workstations in Andrew and Coda 
monitor only the status of servers from 
which they have cached data. They do 
not require any knowledge of the rest of 
the system. File location information on 
Andrew and Coda servers changes rela- 
tively rarely. Caching by Venus, rather 
than file location changes in Vice, is 
used to deal with movement of users. 

Coda integrates server replication (a 
relatively heavyweight mechanism) with 
caching to improve availability without 
losing scalability. Knowledge of a cach- 
ing site is confined to servers with call- 
backs for the caching site. Coda does 

not depend on knowledge of sys- 
temwide topology, nor does it incorpo- 
rate any algorithms requiring sys- 
temwide election or commitment. 

Another instance of the application 
of this principle is the use of negative 
rights. Andrew provides rapid revoca- 
tion by modifications of an access list 
at a single site rather than by sys- 
temwide change of a replicated protec- 
tion database. 

Trust the fewest possible enti- 
tles. A system whose security depends 
on the integrity of the fewest possible 
entities is more likely to remain secure 
as it grows. 

Rather than trusting thousands of 
workstations, security in Andrew and 
Coda is predicated on the integrity of 
the much smaller number of Vice serv- 
ers. The administrators of Vice need 
only ensure the physical security of 
these servers and the software they 
run. Responsibility for workstation in- 
tegrity is delegated to the owner of 
each workstation. Andrew and Coda 
rely on end-to-end encryption rather 
than physical link security. 

Batch if possible. Grouping op- 
erations (and hence scalability) can im- 
prove throughput, although often at the 
cost of latency. 

The transfer of files in large chunks 
in AFS-3 and in their entirety in AFS-1, 
AFS-2, and Coda is an instance of the 
application of this principle. More effi- 
cient network protocols can be used 
when data is transferred en masse 
rather than as individual pages. In 
Coda the second phase of the update 
protocol is deferred and batched. La- 
tency is not increased in this case be- 
cause control can be returned to appli- 
cation programs before the completion 
of the second phase. 

AFS-1 was in use for about a year, from 
late 1984 to late 1985. At its peak usage, 
there were about 100 workstations and six 
servers. Performance was usually accept- 
able to about 20 active users per server. But 
sometimes a few intense users caused per- 
formance to degrade intolerably. The sys- 
tem turned out to be difficult to operate and 
maintain, especially because it provided 

few tools to help system administrators. 
The embedding of file location informa- 
tion in stub directories made it hard to 
move user files between servers. 

AFS-2. The design of AFS-2 was based 
on our experience with AFS- 1 as well as on 
extensive performance analysis.' We re- 
tained the strategy of workstations caching 

entire files from a collection of dedicated 
autonomous servers. But we made many 
changes in the realization of this architec- 
ture, especially in cache management, 
name resolution, communication, and 
server process structure. 

A fundamental change in AFS-2 was the 
manner in which cache coherence was 
maintained. Instead of checking with a 

May 1990 11 



Load units 

Figure 3. AFS-2 versus Sun NFS performance under load on identical client, 
server, and network hardware. A load unit consists of one client workstation 
running an instance of the Andrew benchmark. (Full details of the benchmark 
and experimental configuration can be found in Howard et al.,] from which this 
graph is adapted.) As the graph clearly indicates, the performance of AFS-2, 
even with a cold cache, degrades much more slowly than that of NFS. 

server on each open, Venus now assumed 
that cache entries were valid unless other- 
wise notified. When a workstation cached 
a file or directory, the server promised to 
notify that workstation before allowing a 
modification by any other workstation. 
This promise, known as a callback, re- 
sulted in a considerable reduction in cache 
validation traffic. 

Callback made it feasible for clients to 
cache directories and to translate path- 
names locally. Without callbacks, the 
lookup of every component of a pathname 
would have generated a cache validation 
request. For reasons of integrity, directory 
modifications were made directly on serv- 
ers, as in AFS-I. Each Vice file or direc- 
tory in AFS-2 was identified by a unique 
fixed-length file identifier. Location infor- 
mation was contained in a slowly changing 
volume location database replicated on 
each server. 

AFS-2 used a single process to service 
all clients of a server, thus reducing the 
context switching and paging overheads 
observed in AFS- 1. A nonpreemptive 
lightweight process mechanism supported 
concurrency and provided a convenient 
programming abstraction on servers and 
clients. The RPC (remote procedure call) 

mechanism in AFS-2, which was inte- 
grated with the lightweight process mecha- 
nism, supported a very large number of 
active clients and used an optimized bulk- 
transfer protocol for file transfer. 

Besides the changes we made for per- 
formance, we also eliminated AFS-I 's 
inflexible mapping of Vice files to server 
disk storage. This change was the basis of 
a number of mechanisms that improved 
system operability. Vice data in AFS-2 
was organized in terms of a data-structur- 
ing primitive called a volume, a collection 
of files forming a partial subtree of the 
Vice name space. Volumes were glued 
together at mount points to form the com- 
plete name space. Venus transparently 
recognized and crossed mount points dur- 
ing name resolution. 

Volumes were usually small enough to 
allow many volumes per server disk parti- 
tion. Volumes formed the basis of disk 
quotas. Each system user was typically 
assigned a volume, and each volume was 
assigned a quota. Easily moved between 
servers by system administrators, a vol- 
ume could be used (even for update) while 
it was being moved. 

Read-only replication of volumes made 
it possible to provide increased availabil- 

ity for frequently read but rarely updated 
files, such as system programs. The backup 
and restoration mechanism in AFS-2 also 
made use of volume primitives. To back up 
a volume, a read-only clone was first made. 
Then, an asynchronous mechanism trans- 
ferred this frozen snapshot to a staging 
machine from which it was dumped to tape. 
To handle the common case of accidental 
deletion by users, the cloned backup vol- 
ume of each user's files was made available 
as a read-only subtree of that user's home 
directory. Thus, users themselves could 
restore files within 24 hours by means of 
normal file operations. 

AFS-2 was in use at CMU from late 1985 
until mid- 1989. Our experience confirmed 
that it was indeed an efficient and conve- 
nient system to use at large scale. Con- 
trolled experiments established that it per- 
formed better under load than other con- 
temporary file systems.',' Figure 3 presents 
the results of one such experiment. 

AFS-3. In 1988, work began on a new 
version of the Andrew file system called 
AFS-3. (For ease of exposition, all changes 
made after the AFS-2 release described in 
Howard et al.' are described here as pertain- 
ing to AFS-3. In reality, the transition from 
AFS-2 to AFS-3 was gradual.) The revision 
was initiated at CMU and has been contin- 
ued since mid-1989 at Transarc Corpora- 
tion, a commercial venture involving many 
of the original implementers of AFS-3. The 
revision was motivated by the need to pro- 
vide decentralized system administration, 
by the desire to operate over wide area 
networks, and by the goal of using industry 
standards in the implementation. 

AFS-3 supports multiple administrative 
cells, each with its own servers, worksta- 
tions, system administrators, and users. 
Each cell is a completely autonomous 
Andrew environment, but a federation of 
cells can cooperate in presenting users with 
a uniform, seamless filename space. The 
ability to decompose a distributed system 
into cells is important at large scale because 
i t  allows administrative responsibility to be 
delegated along lines that parallel institu- 
tional boundaries. This makes for smooth 
and efficient system operation. 

The RPC pro.tocol used in AFS-3 pro- 
vides good performance across local and 
wide area networks. In conjunction with the 
cell mechanism, this network capability has 
made possible shared access to a common, 
nationwide file system, distributed over 
nodes such as MIT, the University of Michi- 
gan, and Dartmouth, as well as CMU. 

Venus has been moved into the Unix 
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Other contemporary distributed file systems 
A testimonial to the importance of 

distributed file systems is the large 
number of efforts to build such sys- 
tems in industry and academia. The 
following are some systems currently 
in use: 

Sun NFS has been widely viewed 
as a de facto standard since its intro- 
duction in 1985. Portability and 
heterogeneity are the dominant con- 
siderations in its design. Although 
originally developed on Unix, it is now 
available for other operating systems 
such as MS-DOS. 

Apollo Domain is a distributed 
workstation environment whose devel- 
opment began in the early 1980s. 
Since the system was originally in- 
tended for a close-knit team of col- 

Further reading 
Surveys 

Satyanarayanan, M., “A Survey of Distrib- 
uted File Systems,” in Annual Review of 
Computer Science, J.F. Traub et al., eds., 
Annual Reviews, Inc., Palo Alto, Calif., 
1989. 

Svobodova, L., “File Servers for Network- 
Based Distributed Systems,” ACM Compur- 
ing Surveys, Vol. 16, No. 4, Dec. 1984. 

Individual systems 

Amoeba 
van Renesse, R., H. van Staveren, and A S .  
Tanenbaum, “The Performance of the 
Amoeba Distributed Operating System,” 

laborating individuals, scale was not a 
dominant design consideration. But large 
Apollo installations now exist. 

IBM AIX-DS is a collection of distrib- 
uted system services for the AIX operat- 
ing system, a derivative of System V 
Unix. A distributed file system is the pri- 
mary component of AIX-DS. Its goals in- 
clude strict emulation of Unix semantics, 
ability to efficiently support databases, 
and ease of administering a wide range 
of installation configurations. 

AT&T RFS is a distributed file system 
developed for System V Unix. Its most 
distinctive feature is precise emulation of 
local Unix semantics for remote files. 

Sprite is an operating system for net- 
worked uniprocessor and multiprocessor 
workstations, designed at the University 
of California at Berkeley. The goals of the 

Software Practice and Experience, Vol. 19, No. 
3, Mar. 1989. 

Apollo Domain 
Levine, P., “The Apollo Domain Distributed 
File System” in Theory and Practice of Distrib- 
uted Operating Systems, Y. Paker, J.-T. Ba- 
natre, and M. Bozyigit, eds., NATO AS1 Series, 
Springer-Verlag. 1987. 

AT6T RFS 
Rifkin, A.P., et al., “RFS Architectural Over- 
view” Proc. Summer Usenix Conf., Atlanta, 
1986, pp. 248-259. 

Echo 
Hisgen, A., et al., “Availability and Consis- 
tency Trade-offs in the Echo Distributed File 
System,” Proc. Second IEEE Workshop on 

Sprite file system include efficient use 
of large main memory caches, 
diskless operation, and strict Unix 
emulation. 

system built by the Free University 
and CWI (Mathematics Center) in 
Amsterdam. The first version of the 
distributed file system used optimistic 
concurrency control. The current ver- 
sion provides simpler semantics and 
has high performance as its primary 
objective. 

Echo is a distributed file system 
currently being implemented at the 
System Research Center of Digital 
Equipment Corporation. It uses a pri- 
mary site replication scheme, with 
reelection in case the primary site 
fails. 

Amoeba is a distributed operating 

Workstation Operating Systems, CS Press, 
Los Alamitos, Calif., Order No. 2003, Sept. 
1989. 

IBM AIX-DS 
Sauer, C.H., et al., “RT PC Distributed Ser- 
vices Overview,” ACM Operating Systems 
Review, Vol. 21, No. 3, July 1987,pp. 18-29. 

Sprite 
Ousterhout, J.K.,  et al., “The Sprite Network 
Operating System,” Computer, Vol. 21, No. 
2, Feb. 1988, pp. 23-36. 

Sandberg, R., et al., “Design and Implemen- 
tation of the Sun Network File System,” 
Proc. Summer Usenix Conf., Portland, 1985, 

Sun NFS 

pp. 119-130. 

kernel in order to use the vnode file inter- 
cept mechanism from Sun Microsystems, 
a de facto industry standard. The change 
also makes it possible for Venus to cache 
files in large chunks (currently 64 Kbytes) 
rather than in their entirety. This feature 
reduces file-open latency and allows a 
workstation to access files too large to fit 
on its local disk cache. 

Security in Andrew 
A consequence of large scale is that the 

casual attitude toward security typical of 
close-knit distributed environments is not 

acceptable. Andrew provides mechanisms 
to enforce security, but we have taken care 
to ensure that these mechanisms do not 
inhibit legitimate use of the system. Of 
course, mechanisms alone cannot guaran- 
tee security; an installation also must fol- 
low proper administrative and operational 
procedures. 

A fundamental question is who enforces 
security. Rather than trusting thousands of 
workstations, Andrew predicates security 
on the integrity of the much smaller num- 
ber of Vice servers. No user software is 
ever run on servers. Workstations may be 
owned privately or located in public areas. 
Andrew assumes that the hardware and 

software on workstations may be modified 
in arbitrary ways. 

This section summarizes the main as- 
pects of security in Andrew, pointing out 
the changes that occurred as the system 
evolved. These changes have been small 
compared to the changes for scalability. 
More details on security in Andrew can be 
found in an earlier work.3 

Protection domain. The protection do- 
main in Andrew is composed of users and 
groups. A user is an entity, usually a hu- 
man, that can authenticate itself to Vice, be 
held responsible for its actions, and be 
charged for resource consumption. A 
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File I[?]- : : authentication server server 

Figure 4. Major components and relationships involved in authentication in Andrew. Modifications such as password 
changes and additions of new users are made to the master authentication server, which distributes these changes to the 
slaves. When a user logs in, a client can obtain authentication tokens on the user’s behalf from any slave authentication 
server. The client uses these tokens as needed to establish secure connections to file servers. 

group is a set of other groups and users. 
Every group is associated with a unique 
user called its owner. 

AFS-1 and AFS-2 supported group in- 
heritance, with a user’s privileges being 
the cumulative privileges of all the groups 
it belonged to, either directly or indirectly. 
Modifications of the protection domain 
were made off line by system administra- 
tors and typically were reflected in the 
system once a day. In AFS-3, modifica- 
tions are made directly by users to aprotec- 
tion server that immediately reflects the 
changes in the system. To simplify the 
implementation of the protection server, 
the initial release of AFS-3 does not sup- 
port group inheritance. This may change in 
the future because group inheritance con- 
ceptually simplifies management of the 
protection domain. 

One group is distinguished by the name 
System:Administrators. Membership in 
this group endows special administrative 
privileges, including unrestricted access to 
any file in the system. The use of a 
System:Administrators group rather than a 

pseudo-user (such as “root” in Unix sys- 
tems) has the advantage that the actual 
identity of the user exercising special privi- 
leges is available for use in audit trails. 

Authentication. The Andrew RPC 
mechanism provides support for secure, 
authenticated communication between 
mutually suspicious clients and servers, by 
using a variant of the Needham and Schroe- 
der private key a l g ~ r i t h m . ~  When a user 
logs in on a workstation, his or her pass- 
word is used to obtain tokens from an 
authentication server. These tokens are 
saved by Venus and used as needed to 
establish secure RPC connections to file 
servers on behalf of the user. 

The level of indirection provided by 
tokens improves transparency and seca- 
rity. Venus can establish secure connec- 
tions to file servers without users’ having 
to supply a password each time a new 
server is contacted. Passwords do not have 
to be stored in the clear on workstations. 
Because tokens typically expire after 24 
hours, the period during which lost tokens 

can cause damage is limited. 
As shown in Figure 4, there are multiple 

instances of the authentication server, each 
running on a trusted Vice machine. One of 
the authentication servers, the master, re- 
sponds to updates by users and system 
administrators and asynchronously propa- 
gates the updates to other servers. The 
latter are slaves and only respond to que- 
ries. This design provides robustness by 
allowing users to log in as long as any slave 
or the master is accessible. 

For reasons of standardization, the AFS- 
3 developers plan to adopt the Kerberos 
authentication system.5 Kerberos provides 
the functionality of the Andrew authenti- 
cation mechanism and closely resembles i t  
in design. 

Filesystem protection. Andrew uses an 
access list mechanism for file protection. 
The total rights specified for a user are the 
union of the rights specified for the user 
and for the groups he or she belongs to. 
Access lists are associated with directories 
rather than individual files. The reduction 
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able at large scale. An access list can spec- 
ify negative rights. An entry in a negative 
rights list indicates denial of the specified 

When network 
partitions occur, 

rights, with denial overriding possession Coia allows data to be 
in case of conflict. Negative rights de- 
couple the uroblems of rapid revocation updated in each partition 
and’ propagation of group membership but detects and confines 
information and are particularly valuable conflicting updates 

- 1  

as soon as possible in a large distributed system. 
Although Vice actually enforces protec- 

tion on the basis of access lists, Venus after their occurrence* 
superimposes an emulation of Unix pro- It also provides 
tection semantics. The owner component 
of the Unix mode bits on a file indicate 
readabilitv. writabilitv. or executabilitv. 

mechanisms to help 
users recover from 

2 ,  ., 
These bits, which indicate what can be such conflicts. 
done to the file rather than who can do it, 
are set and examined by Venus but ignored 
by Vice. The combination of access lists on 
directories and mode bits on files has 
proved to be an excellent compromise 
between protection at fine granularity, 
conceptual simplicity, and Unix compati- 
bility. 

Resource usage. A security violation in 
a distributed system can manifest itself as 
an unauthorized release or modification of 
information or as a denial of resources to 
legitimate users. Andrew’s authentication 
and protection mechanisms guard against 
unauthorized release and modification of 
information. Although Andrew controls 
server disk usage through a per-volume 
quota mechanism, it does not control re- 
sources such as network bandwidth and 
server CPU cycles. In our experience, the 
absence of such controls has not proved to 
be a problem. What has been an occasional 
problem is the inconvenience to the owner 
of a workstation caused by the remote use 
of CPU cycles on that workstation. The 
paper on security in Andrew3 elaborates on 
this issue. 

High availability in 
Coda 

The Coda file system, a descendant of 
AFS-2, is substantially more resilient to 
server and network failures. The ideal that 
Coda strives for is constant data availabil- 
ity, allowing a user to continue working 
regardless of failures elsewhere in the 
system. Coda provides users with the bene- 
fits of a shared data repository but allows 
them to rely entirely on local resources 
when that repository is partially or totally 
inaccessible. 

A related goal of Coda is to gracefully 
integrate the use of portable computers. At 
present, users manually copy relevant files 
from Vice, use the machine while isolated 
from the network, and manually copy 
updated files back to Vice upon reconnec- 
tion. These users are effectively perform- 
ing manual caching of files with write- 
back on reconnection. If one views the 
disconnection from Vice as a deliberately 
induced failure, it is clear that a mecha- 
nism for supporting portable machines in 
isolation is also a mechanism for fault 
tolerance. 

By providing the ability to move seam- 
lessly between zones of normal and dis- 
connected operation, Coda may simplify 
the use of cordless network technologies 
such as cellular telephone, packet radio, or 
infrared communication in distributed file 
systems. Although such technologies pro- 
vide client mobility, they often have intrin- 
sic limitations such as short range, inabil- 
ity to operate inside steel-framed build- 
ings, or line-of-sight constraints. These 
shortcomings are reduced in significance 
if clients are capable of temporary autono- 
mous operation. 

The design of Coda was presented in 
detail in a recent paper.6 A large subset of 
the design has been implemented, and 
work is in progress to complete the im- 
plementation. One can sit down at a Coda 
workstation today and execute Unix appli- 
cations without recompilation or relink- 
ing. Execution continues transparently 
when contact with a server is lost due to a 
crash or network failure. In the absence of 
failures, using a Coda workstation feels no 

Design overview. The Coda design re- 
tains key features of AFS-2 that contribute 
to scalability and security: 

Clients cache entire files on their local 
disks. From the perspective of Coda, 
whole-file transfer also offers a degree of 
intrinsic resiliency. Once a file is cached 
and open at a client, i t  is immune to server 
and network failures. Caching on local 
disks is also consistent with our goal of 
supporting portable machines. 

Cache coherence is maintained by the 
use of callbacks. 

Clients dynamically find files on serv- 
ers and cache location information. 

Token-based authentication and end- 
to-end encryption are used as the basis of 
security. 

Coda provides failure resiliency through 
two distinct mechanisms. It uses server 
replication, or the storing of copies of files 
at multiple servers, to provide a highly 
available shared storage repository. When 
no server can be contacted, the client re- 
sorts to disconnected operation, a mode of 
execution in which the client relies solely 
on cached data. Neither mechanism is 
adequate alone. While server replication 
increases the availability of all shared data, 
it does not help if all servers fail or if all are 
inaccessible due to a network failure adja- 
cent to a client. On the other hand, perma- 
nent disconnected operation is infeasible. 
The disk storage capacity of a client is a 
small fraction of the total shared data. 
Permanent disconnected operation is also 
inconsistent with the Andrew model of 
treating each client’s disk merely as a 
cache. Key advantages of the Andrew 
architecture, namely mobility and a user’s 
ability to treat any workstation as his or her 
own, are lost. 

From a user’s perspective, transitions 
between these complementary mecha- 
nisms are seamless. A client relies on 
server replication as long as it remains in 
contact with at least one server. It treats 
disconnected operation as a measure of last 
resort and reverts to normal operation at 
the earliest opportunity. A portable client 
that is isolated from the network is effec- 
tively operating in disconnected mode. 

When network partitions occur, Coda 
allows data to be updated in each partition 
but detects and confines conflicting up- 
dates as soon as possible after their occur- 
rence. It also provides mechanisms to help 
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Figure 5. Servicing a cache miss in Coda: the events that follow from a cache 
miss at the client. Both data and status are fetched from Server 1, which is the 
preferred server (PS). Only status is fetched from Server 2 and Server 3. The 
calls to all three servers occur in parallel. 

users recover from such conflicts. This 
strategy is optimistic, in contrast to a pes- 
sirnistic strategy that would preserve strict 
consistency by disallowing updates in all 
but one partition. We chose an optimistic 
strategy for two reasons: First, we saw no 
clean way to support disconnected opera- 

tion with a pessimistic strategy. Second, it 
is widely believed that sequential write 
sharing between users is relatively infre- 
quent in Unix environments, so conflicting 
updates are likely to be rare. 

Coda provides a scalable and highly 
available approximation of Unix seman- 

COP1 I s t a t u s . )  
Server 2 Client COP2 (update set) 

Figure 6. A store operation in Coda: the two phases of the Coda update protocol 
In the first phase, COP1, the three servers are sent new status and data in paral. 
lel. In the later asynchronous phase, COP2, the update set is sent to these serv- 
ers. COP2 also occurs in parallel and can be piggybacked on the next COP1 to 
these servers. 

tics. We arrived at this semantics on the 
basis of our positive experience with AFS- 
2 .  In the absence of failures, Coda and 
AFS-2 semantics are identical. On open, 
the latest copy of a file in the system is 
cached from Vice. Read and write opera- 
tions are made to the cached copy. On 
close, the modified file is propagated to 
Vice. Future opens anywhere in the system 
will see the new copy of the file. In the 
presence of failures, Coda and AFS-2 
semantics differ. An open or close in AFS- 
2 would fail if the server responsible for 
the file was inaccessible. In Coda, an open 
fails only on a cache miss during discon- 
nected operation or if a conflict is detected. 
A close fails only if a conflict is detected. 

Server replication. The unit of replica- 
tion in Coda is a volume. A replicated 
volume consists of several physical vol- 
umes, or replicas, that are managed as one 
logical volume by the system. Individual 
replicas are not normally visible to users. 
The set of servers with replicas ofavolume 
constitutes its volume storage group 
(VSG). The degree of replication and the 
identity of the replication sites are speci- 
fied when a volume is created. Although 
these parameters can be changed later, we 
do not anticipate such changes to be fre- 
quent. For every volume from which it has 
cached data, Venus keeps track of the 
subset of the VSG that is currently acces- 
sible. This subset is called the accessible 
VSG (AVSG). Different clients may have 
different AVSGs for the same volume at a 
given instant. Venus performs periodic 
probes to detect shrinking or enlargement 
of the AVSGs from which it has cached 
data. These probes are relatively infre- 
quent, occurring once every 10 minutes in 
our current implementation. 

Coda integrates server replication with 
caching, using a variant of the read-one, 
write-all strategy. This variant can be 
characterized as read-one-data, read-all- 
status, write-all. In the common case of a 
cache hit on valid data, Venus avoids con- 
tacting the servers altogether. When ser- 
vicing a cache miss, Venus obtains data 
from one member of its AVSG, known as 
thepreferredserver. The PS can be chosen 
at random or on the basis of performance 
criteria such as physical proximity, server 
load, or server CPU power. Although data 
is transferred only from one server, Venus 
contacts the other servers to collect their 
versions and other status information. 
Venus uses this information to check 
whether the accessible replicas are equiva- 
lent. If the replicas are in conflict, the 

. 
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system call that triggered the cache miss is 
aborted. If the replicas are not in conflict 
but some replicas are stale, the AVSG is 
notified asynchronously that a refresh is 
necessary. In the special case where the 
data on the PS is stale, a new PS is selected 
and the fetch is repeated. The message 
exchange in the normal case, where there is 
no conflict and the PS has the latest copy of 
the data, is illustrated in Figure 5. A call- 
back is established with the PS as a side- 
effect of successfully fetching the data. 

When a file is closed after modification, 
it is transferred to all members of the 
AVSG. This approach is simple to imple- 
ment and maximizes the probability that 
every replication site has current data at all 
times. Server CPU load is minimized be- 
cause the burden of data propagation is on 
the client rather than the servers. This in 
turn improves scalability, since the server 
CPU is the bottleneck in many distributed 
file systems. Operations that update direc- 
tories, such as creating a new directory or 
removing a file, are also written through to 
all AVSG members. 

Because its replication scheme is opti- 
mistic, Coda checks for existing conflicts 
on each server operation. The update 
protocol also guarantees eventual detec- 
tion of new conflicts caused by the update. 
This protocol consists of two phases, 
COPl and COP2, where COP stands for 
Coda optimistic protocol. The first phase 
performs the semantic part of the opera- 
tion, such as transferring file contents, 
making a directory entry, or changing an 
access list. Each server verifies that its 
copy does not conflict with the client’s 
copy before performing the update. The 
second phase distributes to the servers a 
data structure called the update set, which 
summarizes the client’s knowledge of who 
performed the COPl operation. The up- 
date set maintains the version information 
used in conflict detection. Figure 6 illus- 
trates the message exchange in a store 
operation (which corresponds to a file 
close). 

Two protocol optimizations improve 
performance: First, latency is reduced by 
Venus’s returning control to the user after 
completion of COPl and performing 
COP2 asynchronously. Second, network 
and server CPU loads can be reduced by 
Venus’s piggybacking the asynchronous 
COP2 messages on subsequent COPl calls 
to the same VSG. 

At present, a server performs no explicit 
remote actions upon recovery from a crash. 
Rather, i t  depends on clients to notify it of 
stale or conflicting data. Although this 

lazy strategy does not violate Coda’s.con- 
sistency guarantees, it does increase the 
chances of a future conflict. A better ap- 
proach, which we plan to adopt in the 
future, is for a recovering server to contact 
other servers to bring itself up to date. 

Each server operation in Coda typically 
involves multiple servers. If the operation 
were carried out sequentially, latency 
would increase significantly. Venus there- 
fore communicates with replication sites 
in parallel, using a parallel RPC mecha- 
nism. This mechanism has been extended 
to use hardware multicast support, if avail- 
able, to reduce the latency and network 
load caused by shipping large files to 
multiple sites. Shipping a large file to three 
servers in our current implementation typi- 
cally takes about 10 percent longer than 
shipping it to one server. 

Operation latency is usually a major 
concern with replication schemes, but 
server replication in Coda has worked well. 
Controlled experiments on identical client 
and server hardware show that under light 
loads Coda’s performance is within five 
percent of the performance of Andrew’s 
current release. Thus, the cost of replica- 
tion is primarily the storage cost for addi- 
tional replicas at the servers. The current 
implementation of Coda does not perform 
quite as well under heavy load. Our mea- 
surements indicate specific areas for im- 
provement, and we are confident that these 
changes will result in an implementation 
with significantly better performance un- 
der load. 

Disconnected operation. Disconnected 
operation begins at a Coda workstation 
when no member of a VSG is accessible. 
Clients view it as a temporary state and 
revert to normal operation at the earliest 
opportunity. A client may be operating in 
disconnected mode with respect to some 
volumes but not others. Disconnected 
operation is transparent to a user unless a 
cache miss occurs. A cache miss normally 
aborts the system call that triggered the 
reference, but i t  is possible to arrange for 
such system calls to block. Return to nor- 
mal operation is also transparent, unless a 
conflict is detected. 

To reduce the chances of a cache miss 
during disconnected operation, Coda al- 
lows a user to specify a prioritized list of 
files and directories that Venus should 
strive to retain in the cache. Objects of the 
highest priority level are “sticky”and must 
be retained at all times. As long as the local 
disk is large enough to accommodate all 
sticky files and directories, the user can 

always access them. Since it is often diffi- 
cult to know exactly what file references 
are generated by a certain set of high-level 
user actions, Coda provides the ability for 
a user to bracket a sequence of high-level 
actions and for Venus to note the file refer- 
ences generated during these actions. The 
implementer of an application can also 
provide a list of files that should be made 
sticky for the application to work when 
disconnected. 

Disconnected operation with respect to 
aparticular volume ends when Venus rees- 
tablishes connection with any member of 
the volume’s VSG. Reconnection results 
from a successful probe--either one of 
Venus’s periodic probes or one manually 
induced by a user-level command. The 
transition from disconnected operation 
invokes a process of reintegration. For 
each cached file or directory that has been 
created, deleted, or modified on the client 
during disconnected operation, Venus 
executes a sequence of update operations 
to make AVSG replicas identical to the 
cached copy. Reintegration proceeds top- 
down, from the root to the leaves of modi- 
fied subtrees. 

Update operations during reintegration 
may fail for one of two reasons. First, there 
may be no authentication tokens that Ve- 
nus can use to communicate securely with 
AVSG members. Users whose tokens 
expire during disconnected operation may 
forestall reintegration until they have re- 
acquired valid tokens to minimize this 
possibility. Second, conflicts may be de- 
tected. Given our model in which servers 
rather than clients are dependable storage 
repositories, we felt that the proper ap- 
proach to handling both of these situations 
was to find a temporary home on servers 
for the data in question and to rely on a user 
to resolve the problem later. 

The temporary repository is realized as a 
covolume for every replica of every vol- 
ume in Coda. Covolumes are similar in 
spirit to lost+found directories in Unix. 
They have a flat name space derived from 
the original low-level identifiers of the 
objects they contain. Covolumes are not 
directly visible to users but are accessed 
indirectly through a repair tool as de- 
scribed in the next section. Migrate is the 
operation that transfers a file or directory 
from a workstation to a covolume. Having 
a covolume per replica allows us to per- 
form migration immediately upon reinte- 
gration failure rather than waiting for 
connection to a particular site. The storage 
overhead of this approach is usually small 
since a covolume is almost always empty. 

May 1990 17 



Mechanisms for building distributed file systems 

Although there is considerable diver- 
sity in the manner in which distributed 
file systems are put together, all the cur- 
rent ones are built from a surprisingly 
small number of basic mechanisms. 
This sidebar presents the most impor- 
tant of these mechanisms and examples 
of how different systems have used 
them. 

- Mount points. The mount mecha- 
nism in Unix enables the gluing together 
of filename spaces to provide applica- 
tions with a single, seamless, hierarchi- 
cally structured name space. In a dis- 
tributed Unix file system, the mount 
mechanism provides a natural hook on 
which to hang a remote subtree. 

There are two different ways to use 
the mechanism. The simpler approach 
is used by systems such as Sun NFS, in 
which each client individually mounts 
subtrees from servers. Although this ap- 
proach is easier to implement, it has the 
disadvantage that the shared name 
space may not be identical at all clients. 
Further, movement of files from one 
server to another requires each client to 
unmount and remount the affected sub- 
tree. In practice, systems that use this 
approach have usually had to provide 
auxiliary mechanisms (such as the Yel- 
low Pages and Automounter in Sun 
NFS) to automate and centralize 
mounts. 

mount information in the data stored in 
the file servers. Andrew and Coda, for 
example, use mount points embedded 
in volumes. Sprite uses remote links for 
a similar purpose. This approach makes 
it relatively simple to ensure that all 
clients see the same shared filename 
space at all times. 

The alternative approach is to embed 

Client caching. The caching of 
data at clients is undoubtedly the archi- 
tectural feature that contributes most to 
performance in a distributed file system. 
Every distributed file system in serious 
use today uses some form of caching. 
Even AT&T's RFS, which initially 
avoided caching in the interests of strict 
Unix emulation, now uses it. In most 
systems, clients maintain the cache in 
their main memory. Andrew and Coda, 
in contrast, cache on the local disk, with 
a further level of caching in main mem- 
ory. 

A key issue in caching is the size of 
the cached units of data. Most distrib- 

AFS-2 cache entire files. AFS-3 and 
most other file systems cache portions of 
a file. 

Cache validation can be done in two 
ways. One approach is for the client to 
contact the server for validation. The al- 
ternative approach, used in AFS-2, AFS- 
3, Coda, AIX-DS, and Echo, is to have 
the server notify clients when cached 
data is about to be rendered stale. Al- 
though more complex to implement, the 
latter approach can produce substantial 
reductions in client-server traffic. 

Existing systems use a wide spectrum 
of approaches in propagating modifica- 
tions from client to server. AIX-DS usu- 
ally propagates changes to the server 
only when the file is explicitly flushed. 
Andrew and Coda propagate changes 
when a file is closed after writing. Sprite 
delays propagation until dirty cache 
pages have to be reclaimed or for a 
maximum of 30 seconds. Deferred 
propagation improves performance since 
data is often overwritten, but it increases 
the possibility of server data being stale 
due to a client crash. 

- Hints. In the context of distributed 
systems, a hint is a piece of information 
that can substantially improve perform- 
ance if correct but has no semantically 
negative consequence if erroneous. For 
maximum performance benefit, a hint 
should nearly always be correct. By 
caching hints, one can obtain substantial 
performance benefits without incurring 
the cost of maintaining cache consis- 
tency. Only information that is self-vali- 
dating upon use is amenable to this strat- 
egy. One cannot, for instance, treat file 
data as a hint because the use of a 
cached copy of the data will not reveal 
whether it is current or stale. 

tion information in distributed file sys- 
tems. Sprite, for instance, caches map- 
pings of pathname prefixes to servers. 
Similarly, Andrew and Coda cache indi- 
vidual entries from the volume location 
database. Apollo Domain uses a more 
elaborate location scheme incorporating 
a hint manager. 

Hints are most often used for file loca- 

Bulk data transfer. Network commu- 
nication overhead caused by protocol 
processing typically accounts for a major 
portion of the latency in a distributed file 
system. Transferring data in bulk reduces 
this overhead by amortizing fixed proto- 
col overheads over many consecutive 

uted file systems cache individual pages 
of files. Coda, Amoeba, AFS-1, and 

pages of a file. For effectiveness, bulk 
transfer protocols depend on spatial lo- 

cality of reference within files. 
The degree to which bulk transfer is 

exploited varies from system to sys- 
tem. Amoeba, Andrew, and Coda are 
critically dependent on it. Sun NFS and 
Sprite exploit bulk transfer by using 
very large packet sizes, typically 8 kilo- 
bytes. Bulk transfer protocols will in- 
crease in importance as distributed file 
systems spread across networks of 
wider geographic area and thus have 
greater inherent latency. 

. Encryption. Encryption is an indis- 
pensable building block for enforcing 
security in a distributed system. It is 
used for remote authentication and for 
preventing unauthorized release and 
modification of data transmissions. The 
national standard DES (data encryp- 
tion standard) is the most commonly 
used form of private-key encryption. 
The seminal work of Needham and 
Schroeder on the use of encryption for 
authentication is the basis of all current 
security mechanisms in distributed file 
systems. 

Authentication can be performed 
with private or public keys. In the pri- 
vate-key schemes used by Kerberos 
and Andrew, a physically secure au- 
thentication server maintains a list of 
user passwords in the clear. In con- 
trast, the public-key scheme used by 
Sun NFS maintains a publicly readable 
database of authentication keys en- 
crypted with user passwords. The latter 
approach has the attractive character- 
istic that physical security of the au- 
thentication server is unnecessary. Its 
major drawback is that public-key en- 
cryption is computationally more ex- 
pensive. 

Replication. Replication of data at 
multiple servers is the primary mecha- 
nism for providing high availability. The 
more recent file systems such as Coda 
and Echo provide read-write replication 
of data. Amoeba supports read-write 
replication at the directory level be- 
cause files are immutable in that sys- 
tem. Although read-write replication is 
well understood theoretically, little ex- 
perience of its use exists as yet. 

More experience has been gathered 
with read-only data replication, which 
is supported by systems such as Sun 
NFS and Andrew. Though suitable only 
for files that change relatively rarely, it 
is valuable because many critical files 
(such as system binaries) possess this 
property. 
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hroughout the evolution of the 
Andrelr and CO& filc systems. 

We are currently in the midst of imple- 
menting disconnected operdtion. Although 
we are confident of our ability to support 
short-term disconnected operation (for a 
few minutes or hours), it remains to be seen 

The general 
problem of sharing 

whether long-term disconnected operation information effectively 
in large distributed (for days or weeks) is feasible. Our con- 

cerns center on the overall size of the 
working set and on the predictive power of 
our caching strategies. Our own experi- 

systems is far from 
being solved. 

The next decade 
poses many 

ence, and that of others, suggests that a 
cache of several tens of megabytes should 
be adeouate for a tvuical disconnection of <. 

less than a day. Less obvious is whether challenges and promises 
any anticipatory caching strategy can, with to be a fertile and 

exciting period a reasonable cache size, provide the near- 
uerfect hit rates reauired for long-term 
disconnected operation. 

Conflict resolution. When a conflict is 
detected, Coda first attempts to resolve it 
automatically. Since Unix files are un- 
typed byte streams, there is no information 
to automate their resolution. A directory, 
on the other hand, is an object whose 
semantics is completely known and whose 
resolution can often be automated. For 
example, partitioned creation of uniquely 
named files in the same directory can be 
handled automatically by selectively re- 
playing the missing creates. If automated 
resolution is not possible, Coda marks all 
accessible replicas of the object inconsis- 
tent and moves them to their respective 
covolumes. This ensures damage contain- 
ment because normal operations on these 
replicas will subsequently fail. 

Coda provides a repair tool to assist 
users in manually resolving conflicts. It 
uses a special interface to Venus so that 
requests from the tool are distinguishable 
from normal file system requests. This 
enables the tool to overwrite inconsistent 
files and to perform directory operations 
on inconsistent directories. The tool has 
evolved along with the rest of our system. 
Three generations of the tool are described 
here: the tool for the currently imple- 
mented system, the one we are working on 
at present, and a successor that will incor- 
porate the current wish list. 

In the first-generation tool, inconsistent 
files and directories are marked in conflict 
but are not moved to covolumes. Discon- 
nected operation is not supported because 
there is nowhere to migrate objects to. 
When the tool is invoked on a given object, 
it mounts the accessible replicas of the 
object’s volume in a scratch area of the 
name space. The user can then use normal 
Unix applications to inspect the replicas. 
The replicas are mounted in read-only 

for researchers in 
this area. 

mode so that the user cannot inadvertently 
alter anything. When the user has decided 
on a fix (such as selecting the version in one 
of the replicas to be the new permanent 
one), the tool performs the fix and cleans 
up the workspace. 

The second-generation tool supports 
disconnected operation because it knows 
about covolumes. Inconsistent objects are 
immediately moved to the associated covo- 
lume when the inconsistency is detected. 
When the tool is invoked, it constructs a 
temporary workspace and mounts, read- 
only, the covolumes as well as the replicas 
of the object. As before, the user can navi- 
gate through the replicas. However, names 
of inconsistent objects now correspond to 
objects in the associated covolumes. The 
tool applies the fix and cleans up the work- 
space as the first-generation tool does. 

The primary refinement provided by the 
third-generation tool will be a considerably 
simplified user interface. Venus, in con- 
junction with the tool, will present the 
illusion of an in-place “explosion” of in- 
consistent objects into their distinct ver- 
sions. Invocation of the tool will put Venus 
in amode whereby inconsistent objects can 
be viewed within the existing name space. 
In this mode, Venus will map an inconsis- 
tent file or directory into a read-only direc- 
tory with the same name as the original. 
This directory will be populated with en- 
tries translated by Venus to the versions in 
the various covolumes. The tool will 
handle the fix phase of the repair in the 
same way as the second-generation tool. 

1 the underlying model of computa- 
tion has remained unchanged. A small col- 
lection of trusted servers jointly provides a 
shared data repository for a much larger 
number of untrusted workstations. The 
system design facilitates incremental 
growth by the addition of users and work- 
stations. The security of the system is not 
contingent upon the integrity of the work- 
stations or of the network. 

The problems of scalability, security, 
and availability will continue to be impor- 
tant as distributed file systems grow in 
size. In addition, three other problems will 
be of fundamental importance to the 
broader goal of effective data sharing in 
large distributed systems. These are the 
problems of heterogeneity, access to di- 
verse types of data, and rapid search. 

As a distributed system grows, it tends 
to become more heterogeneous. Coping 
with heterogeneity is inherently difficult 
because of the presence of multiple com- 
putational environments, each with its 
own notions of file naming and functional- 
ity. Since few general principles are appli- 
cable, the idiosyncrasies of each new sys- 
tem have to be accommodated by ad hoc 
mechanisms. Unfortunately, heterogene- 
ity cannot be ignored since it is likely to be 
a chronic problem. 

Alternative models of data are likely to 
become more important in the future. Re- 
lational databases are already in wide- 
spread use in certain application domains. 
Speech, music, images, and video are 
examples of other forms of data that the 
repositories of the future will have to store 
and retrieve. We presently have little 
knowledge of how to share such diverse 
types of data in large-scale distributed sys- 
tems. 

Finding data in a large distributed file 
system is already difficult. As distributed 
storage repositories grow larger and store 
more diverse types of data, the problem of 
searching for relevant information will 
become acute. This is another area where 
we have barely scratched the surface. 

In conclusion, we have made much 
progress in the design and implementation 
of distributed file systems over the last 
decade. Andrew and Coda embody many 
of the key advances made during this pe- 
riod. But the general problem of sharing 
information effectively in large distrib- 
uted systems is far from being solved. The 
next decade poses many challenges and 
promises to be a fertile and exciting period 
for researchers in this area. 
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are creating opportunities to apply new ideas to research and 
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bility, we can better support GTE‘s telecommunications 
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Research Scientist 
Information Retrievd 
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algorithms and their implementation for document 
modeling; and the user-interface to the retrieval s y s  
tem itself. Research prototypes will be developed in C 
and X-windows on multiple operating system plat- 
forms. We require a minimum of a MS in Computer 
Science, and 3 years’ programming with C under vari- 
ous operating systems such as VMS, UNIX, MSDOS, 
and Macintosh. 
GTE Laboratories offers attractive facilities located in a 
quiet, wooded setting just outside of Boston, as well as 
a highly competitive salary and benefits package. We 
invite you to send a resume to Vanessa Stern, GTE 
Laboratories, Inc., Box IEEEC590,40 Sylvan Road, 
Waltham, MA 02254. An equal opportunity employer, 
M/F/wV. 
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