Wireless Networks

Lecture 2: Networking Overview and Wireless Challenges

Peter Steenkiste CS and ECE, Carnegie Mellon University Peking University, Summer 2016

Peter A. Steenkiste

1

Schedule for Today

- Designing a BIG system
- The OSI model
- Packet-based communication
- Challenges in Wireless Networking
- Please ask questions!

Peter A. Steenkiste

The Internet is Big and Has Many, Many Pieces

What Do We Definitely Need?

- We must have communication hardware and applications
- Two "devices" must be able to sent data to each other
 - Applications are what make the network useful and fun
 - We also need to design the network so it can grow very big and is always available
 - » We need to be able to expand, fix, and improve the network
 - » While it is up and running: you cannot reboot the Internet

Protocol Enable Communication

- An agreement between parties on how communication should take place.
- Protocols may have to define many aspects of the communication.
- Syntax:
 - » Data encoding, language, etc.
- Semantics:
 - » Error handling, termination, ordering of requests, etc.
- Protocols at hardware, software, all levels!
- Example: Buying airline ticket by typing.
- Syntax: English, ascii, lines delimited by "\n"

Peter A. Steenkiste

Do We Only Need Protocols?

- Need to also deal with
 - » Many, many pieces of functionality
 - » Complexity
 - » Many parties involved building and running the network
 - » Very long life time
- The solution for dealing with complexity is modularity: break up the Internet "system" in a set of modules with well-defined interfaces
 - » Each module performs specific functions
 - » Can build a large complex system from modules implemented by many parties
- Let us start with multiple protocols ...

Solution #1

7 Peter A. Steenkiste 7

Need to More Add Structure

- Adding structure implies that you prevent people from doing arbitrary (≈ silly) things
 - » Can we organize the modules in a certain way?
- What modules do we definitely need in the Internet?
 - » Hardware modules that allow us to send bits around
 - » Applications that make the network useful for users
- Do we need additional modules "in between" the applications and the hardware?

Peter A. Steenkiste

wc

Scaling up the network

A Bit More Detail

- Physical layer delivers bits between the two endpoints of a "link"
 - » Copper, fiber, wireless, visible light, ...
- Datalink layer delivers packets between two hosts in a local area network
 - » Ethernet, WiFi, cellular, ...
 - » Best effort service: should expect a modest loss rate
 - » "Boxes" that connect links are called bridges or switches
- Network layer connects multiple networks
 - » The Inter-net protocol (IP)
 - » Also offers best effort service
 - » Boxes that forward packets are called routers

Peter A. Steenkiste

13

Schedule for Today

- Designing a BIG system
- The OSI model
- Packet-based communication
- Challenges in Wireless Networking
- Please ask questions!

Peter A. Steenkiste

Networking 101 Layer Network Model

The Open Systems Interconnection (OSI) Model.

Peter A. Steenkiste

15

OSI Motivation

- Standard approach of breaking up a system in a set of components with well defined interfaces, but components are organized as a set of layers.
 - » Only horizontal and vertical communication
 - » Components/layers can be implemented and modified in isolation without affecting the other components
- Each layer offers a service to the higher layer, using the services of the lower layer.
- "Peer" layers on different systems communicate via a protocol.
 - » higher level protocols (e.g. TCP/IP, Appletalk) can run on multiple lower layers
 - » multiple higher level protocols can share a single physical network

Peter A. Steenkiste

Interfaces

- A protocol defines an interface between two protocol modules in the same layer
 - » Uses the lower layers to communicate
 - » Syntax: format of messages exchanged
 - » Semantics: what actions to modules take and when
- Each protocol offers an interface to its users in the higher layer, and expects one from the layers on which it builds
 - » Protocols build on each other to provide increasingly richer communication services
 - » Syntax: specify the format of data
 - » Semantics: what service does each module provide to the next layer

Peter A. Steenkiste

OSI Functions

- (1) Physical: transmission of a bit stream.
- (2) Data link: flow control, framing, error detection.
- (3) Network: switching and routing.
- (4) Transport: reliable end to end delivery.
- (5) Session: managing logical connections.
- (6) Presentation: data transformations.
- (7) Application: specific uses, e.g. mail, file transfer, telnet, network management.

Benefits of Layered Architecture

- Significantly reduces the complexity of building and maintaining the system.
 - » Effort is 7 x N instead of N⁷ for N versions per layer
- The implementation of a layer can be replaced True easily as long as its interfaces are respected For
 - » Does not impact the other components in the system
 - » Different implementation versus different protocols

Wireless

- In practice: most significant evolution and diversity at the top and bottom:
 - » Applications: web, peer-to-peer, video streaming, ...
 - » Physical layers: optical, wireless, new types of copper
 - » Only the Internet Protocol in the "middle" layer

19 Peter A. Steenkiste

Schedule for Today

- Designing a BIG system
- The OSI model
- Packet-based communication
- Challenges in Wireless Networking
- Please ask questions!

Schedule for Today

- Designing a BIG system
- The OSI model
- Packet-based communication
- Challenges in Wireless Networking
- Please ask questions!

Peter A. Steenkiste

Why Use Wireless?

There are no wires!

Has several significant advantages:

- Supports mobile users
 - » Move around office, campus, city, ... users get hooked
 - » Remote control devices (TV, garage door, ..)
 - » Cordless phones, cell phones, ..
 - » WiFi, GPRS, Bluetooth, ...
- No need to install and maintain wires
 - » Reduces cost important in offices, hotels, ...
 - » Simplifies deployment important in homes, hotspots, ...

Peter A. Steenkiste 25

What is Hard about Wireless?

There are no wires!

- In wired networks links are constant, reliable and physically isolated
 - » A 100 Mbs Ethernet always has the same properties
 - » This is definitely not true for "54 Mbs" 802.11a
- In wireless networks links are variable, errorprone and share the ether with each other and other external, uncontrolled sources
 - » Link properties can be extremely dynamic

Attenuation and Errors Hans Inge Inge In wired networks error rate 10⁻¹⁰ or less Wireless networks are far from that target Signal attenuates with distance and is affected by noise and competing signals Obstacles further attenuate the signal Probability of a successful reception depends on the "signal to interference and noise ratio" the SINR More details later in the course

How Do We Increase Network Capacity?

- Easy to do in wired networks: simply add wires
 - » Fiber is especially attractive
- Adding wireless "links" increases interference.
 - » Frequency reuse can help ... subject to spatial limitations
 - » Or use different frequencies ... subject to frequency limitations
- The capacity of the wireless network is fundamentally limited.

Hans Inge

Peter A. Steenkiste

Mobility Affects the Link Throughput

- Quality of the transmission depends on distance and obstacles blocking the "line of sight" (LOS)
 - » "Slow fading" the signal strength changes slowly
- Reflections off obstacles combined with mobility can cause "fast fading"
 - » Very rapid changes in the signal
 - » More on this later
- Hard to predict signal!

How is Wireless Different?

Wired

- Physical link properties are fixed and known during standardization
- Designed for low error rates and throughput is fixed and known
- Datalink layer is simple and optimized for the physical layer
- Internet was designed assuming wires

Wireless

- Physical link properties can change a lot rapidly in unpredictable ways
- Error rates vary a lot and throughput is very dynamic
- How do you design an efficient datalink protocol?
- How well will higher layer protocols work?

The physical layer is the key!

Peter A. Steenkiste