
When Visible Light (Backsca�er) Communication Meets
Neuromorphic Cameras in V2X

Kenuo XuP, Kexing ZhouP, Chengxuan ZhuP, Shanghang ZhangP, Boxin ShiP

Xiaoqiang LiPS, Tiejun HuangP, Chenren XuPZKB∗

PPeking University SSpikeVision (Beijing) Technology Co., Ltd. ZZhongguancun Laboratory
KKey Laboratory of High Con�dence Software Technologies, Ministry of Education (PKU)

ABSTRACT

Intelligent transportation systems are predicted to change the way

people live in the foreseeable future. Vehicular networks are one

of the key enablers for such systems, yet no status-quo solutions

of vehicular networks make practical deployments possible. This

paper proposes NeuromorphicVLC, a visible light communication

system equipped with neuromorphic cameras as optical receivers

to improve its performance. Compared with conventional photodi-

odes or cameras, the new type of bio-inspired CMOS vision sensors

highlight high temporal resolution, large dynamic range, and ade-

quate spatial resolution to �lter out ambient noise. We develop a

complete signal processing pipeline to detect the VLC transmitters

and demodulate the messages. Preliminary experimental results

demonstrate NeuromorphicVLC achieves a 4.8 Kbps bit rate and

ensures reliability in various range and mobile scenarios.

CCS CONCEPTS

• Networks → Mobile networks; • Hardware → Signal process-

ing systems; • Computing methodologies → Computer vision.

KEYWORDS

Visible Light Backscatter Communication; V2X; Neuromorphic

Camera; Spike Camera

ACM Reference Format:

Kenuo Xu, Kexing Zhou, Chengxuan Zhu, Shanghang Zhang, Boxin Shi, Xi-

aoqiang Li, Tiejun Huang, Chenren Xu. 2023. When Visible Light (Backscat-

ter) Communication Meets Neuromorphic Cameras in V2X . In The 24th

International Workshop on Mobile Computing Systems and Applications (Hot-

Mobile ’23), February 22–23, 2023, Newport Beach, CA, USA. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3572864.3580333

1 INTRODUCTION

Transportation systems are becoming ever closer to a major tech-

nological transformation. Vehicles, which used to be bare metals-

on-wheels, have been equipped with hundreds of sensors and em-

bedded computers to assist human drivers with (semi-)autonomous
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driving capabilities. Along with this trend, the road infrastructure

is also evolving such as adaptive tra�c lights and networked pay

tolls. An essential and anticipated component for the forthcoming

intelligent transportation system is Vehicle-to-Everything (V2X)

communication that enables e�ective information exchange be-

tween the vehicles and the infrastructure.

The majority of V2X systems proposed until now are based on

Radio Frequency (RF) communication, such as the IEEE 802.11p

protocol [1] based on WLAN and C-V2X solutions [2] upon cellular

networks. Although such technologies have been well investigated,

a few fatal factors hinder the RF-based V2X solutions from scal-

able applications, such as the scarce radio spectrum and severe

inter-tag interference in scenarios with high node density [3]. Such

fundamental restrictions of RF prompt a complementary, if not

alternative, V2X communication technology based on a di�erent

physical medium. Visible light, when utilized as a wireless commu-

nication medium, can potentially tackle the imperfections of RF. In

recent years, Visible Light Communication (VLC) has been regarded

as a promising technology for the ubiquitous 6G wireless networks

[4, 5]. Bene�ting from the massive bandwidth in the electromag-

netic spectrum and line-of-sight propagation nature of visible light,

VLC is envisioned to complement radio frequency that has several

physical drawbacks such as the spectrum crunch problem [3]. In ad-

dition to the comprehensive academic research progress on indoor

(short-range) VLC systems [6], VLC has been deployed in several

practical real-world deployments such as intra-cabin communica-

tion for business jets [7], and has been standardized by IEEE [8]

and ITU [9]. Moreover, the application scenarios of VLC have also

been expanded to outdoor vehicular scenarios [10].

Despite the nascent research progress of vehicular VLC, innova-

tive solutions are needed to support complex on-road scenarios. In

order to receive the optical links in the presence of high mobility

and adverse lighting conditions, a vehicular VLC receiver should

meet three practical requirements: high sampling rate (to enable a

data rate higher than Kbps level), high dynamic range (to handle

sudden changes of lighting conditions), and adequate resolution (to

exclude ambient optical noise from the area-of-interest). Status-quo

VLC systems typically use photodiodes (with very few pixels for

reception) as the optical receiver. However, the optical noise in the

outdoor mobile scenarios is considerably more severe and leads

to signi�cant throughput/reliability reductions due to the insu�-

ciency of resolution [11]. To handle the interference from ambient

noise, researchers exploit standard cameras (with rolling-shutter

e�ect) with a high number (e.g., 1920 × 1080) of photodetectors to

omit the undesirable optical signals within its �eld-of-view [12].
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Receiver Sampling rate Dynamic range Resolution

PD • 1 MHz • 100 dB 1 × 1 for each

SC 60 Hz 60 dB • 1920 × 1080

NC • 40 kHz • 120 dB • 400 × 250

Table 1: Comparison of neuromorphic camera and related

receivers. • means the property is adequate for vehicular

VLC. PD: photodiode (array); SC: standard camera; NC: neu-

romorphic camera.

The main limitation originates from the low sampling rate of cam-

eras – a typical camera captures only 30-60 frames per second,

which provides an insu�cient communication bandwidth (tens of

bps). The rolling-shutter e�ect may enhance the data rate by tens

or even hundreds of times [13]. However, the transmitter should be

quasi-static to take full advantage of the rolling shutters. The de�-

ciencies of conventional receivers stimulate research on specialized

devices. High-speed cameras [14], digital micro-mirror devices [15],

and dedicated CMOS sensors [16] have been explored as potential

solutions, yet they are in the proof-of-concept stage with almost

no real-world deployment. To sum up, no optical receivers meet

the practical requirements of vehicular VLC so far, and innovative

receivers would be necessary if vehicular VLC is to one day support

practical V2X applications.

In this paper, we introduce neuromorphic cameras as the optical

receivers in pursuit of a practical vehicular VLC system. Neuro-

morphic cameras, which mimic the neurobiological structures and

functionalities of the biological retinas, provide a refreshing and

promising perspective compared with conventional cameras [17].

They have a couple of advantages including high temporal resolu-

tion (in the order of microseconds) and high dynamic range (120

dB versus 60 dB of standard cameras) [18]. Such properties make

them an appealing solution that allows high mobility and complex

ambient light conditions for the receiver of vehicular VLC. The

academia has noticed the emerging devices and started to apply

them for VLC recently [19, 20], but still in their infant stages.

We propose NeuromorphicVLC, an hardware and software pro-

totype of a VLC system equipped with neuromorphic cameras that

aims at vehicular communication and networking. We select the

bio-inspired spike camera [21] as the neuromorphic camera receiver,

considering its advantage of high dynamic range (> 100 dB) and

high sampling rate (up to 40000 Hz). Compared with other typical

neuromorphic cameras such as event cameras [18], the spike cam-

era can capture the visual images (from the neuromorphic output

of the camera, i.e., the spike streams) as a conventional camera

without motion mismatch [22]. Tab. 1 shows the advantage of our

receiver selection compared with other mature VLC receiver solu-

tions. The transmitter is built upon the Visible Light Backscatter

Communication (VLBC) technology [23] that features low power

consumption (sub-mW, 100x less than typical VLC transmitters) and

simplicity of network stack to implement the proposed approach.

The physical and link-layer of VLBC have veri�ed their feasibility

in sparse vehicular communication [24].

We verify the design of NeuromorphicVLC primarily with in-

lab experiments. Evaluation results show that NeuromorphicVLC

achieves a near-zero bit error rate when the tags transmit at 4.8

Kbps. The links are robust under various distances and mobile

scenarios. Our preliminary results demonstrate the feasibility of

enhancing vehicular VLC with neuromorphic cameras. It is possible

and promising to leverage the newly-invented camera technology

as a desirable optical receiver for future V2X communication and

networking systems. These results have important implications

that may pose exciting new opportunities for the renovation of

intelligent transportation systems.

2 BACKGROUND

2.1 Vehicular Visible Light Communication

Visible Light Communication (VLC) is regarded as a promising

solution for vehicular networks because of its low cost and no elec-

tromagnetic interference. Modern illumination and display tech-

nologies, such as light-emitting diode (LED) and liquid-crystal dis-

play (LCD), are becoming more accessible and have enabled new

perspectives for communication – fast and reliable networks can

be accessed via the ubiquitous illumination infrastructure. Current

VLC systems typically employ LEDs as the transmitter to modulate

message bits (e.g., with on-o� keying) on the light signals. The

optical signals are further received by certain receivers such as

photodiodes [25, 26], (high-speed) cameras [13, 14], and dedicated

sensors [15, 16] as the receiver. However, no status-quo VLC sys-

tems satisfy the practical requirements for vehicular networking.

Photodiode-based solutions su�er from ambient interference (sun-

light and other luminaries) greatly, or get restricted by a narrow

�eld-of-view (FOV) [27]. Meanwhile, camera-based systems o�er a

wider FOV but are limited in the low throughput due to low tem-

poral resolution (typically 30-60 frames per second). Novel devices

thus become a necessity for practical VLC systems.

2.2 Spike Camera

The bio-inspired spike camera [21] is a representative of neuro-

morphic cameras that we mainly focus on in this paper. The spike

camera, aiming to capture high-speed movements, is inspired by

the sampling mechanism of primate fovea consisting of three main

modules: a photoreceptor, an integrator, and a threshold compara-

tor. The integrator keeps integrating the incident light intensity � .

Once the voltage reaches a prede�ned threshold ¨, i.e.,
∫

�dC ≥ ¨,

the comparator outputs a one-bit spike immediately and resets

the integrator at the same time. In this way, the output of a spike

camera is a 0-1 array (where 1 represents a spike and 0 is recorded

for timing) as the sequence of spike stream for each independent

pixel. The spike streams are bio-inspired representations of visual

images. Specialized algorithms are required to perform vision tasks

and extract the visual information from the spike streams, such as

for visual reconstruction [22], optical �ow estimation [28], depth

estimation [29], and super-resolution [30]. The spike camera has

several merits compared with conventional cameras, such as high

temporal resolution (up to 40000 Hz), and high dynamic range (> 100

dB). These merits allow practical high-speed vision for autonomous

driving, robotics, and unmanned aerial vehicles. In addition to the

performance merits, the image sensor chip of the spike camera uses

the common CMOS technology (e.g., 110 nm) that has been widely

used in conventional image sensors for smartphones. Therefore,

the cost of a spike camera could be comparable to existing vision

sensors once in massive manufacturing.
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Figure 2: System architecture of NeuromorphicVLC.

2.3 Visible Light Backscatter Communication

Visible Light Backscatter Communication (VLBC) is an emerging

technology that utilizes special low-power tags as the transmitters

of VLC to reduce power consumption. The basic design of a VLBC

tag is to re�ect the incoming light using a retrore�ective fabric and

modulate it with a liquid crystal shutter. The retrore�ective fabric,

which has been widely used in on-road objects including road

signs and safety clothing, re�ects light to its source with minimum

scattering. A liquid crystal shutter leverages the physical properties

of liquid crystals to electronically control the illumination level of

light passing through it. At the upper level, the communication

logic �ow is controlled by a low-power micro-control unit inside

the tag. Status-quo VLBC tag transmits at as fast as 1 Kbps with less

than 500 µW power consumption. Therefore, it can be powered by

a small solar panel, or by a button cell with years of battery life [23].

In addition, the multi-pixel design, which allows the tag to control

di�erent parts of the liquid crystal shutters independently, can

further improve the data rate to up to 32 Kbps [31]. At the receiver

side, both (multi-)photodiodes [32] and smartphone cameras [33]

have been explored to receive the modulated bits sent by tags.

3 NEUROMORPHICVLC DESIGN

3.1 System Overview

NeuromorphicVLC is designed to bene�t V2X applications sce-

narios including providing additional information to the out-of-

sight vehicles, broadcasting dynamic road restrictions (e.g., bus-

only lanes), and assisting perception in blind areas due to blockage

(e.g., in mountainous areas), as shown in Fig. 1. The VLBC tags are

deployed near the road and can be integrated into the status-quo

infrastructure such as road signs and warning triangles. They are

equipped with liquid crystal shutters that modulate messages with

optical signals according to the control of a micro-control unit.

They can either be set up to broadcast (pre-loaded) static messages

repeatedly or dynamic environmental sensory data. At the other

end, the vehicles are equipped with spike cameras (e.g., integrated

with Vehicle Traveling Data Recorder), which may also be lever-

aged for visual perception tasks, to receive the messages sent by the

tags. The spike streams captured by the spike camera are further

processed with on-vehicle computers of the spike vision system.

We show the system architecture of NeuromorphicVLC in Fig. 2.

The spike vision systems mount on the vehicles process the spike

streams (the output of the spike camera) and demodulate the infor-

mation sent by the tags with a series of algorithms. The algorithm

framework is divided into four steps. First, we design an image re-

construction algorithm for spike cameras to reconstruct grayscale

images from spike streams (§3.2). The algorithm limits the look-

ahead depth of the spike streams, focusing on the bright pixels that

are more likely to be the target. An adaptive quantization algo-

rithm is then applied to the reconstructed grayscale images that

can cope with di�erent luminance for contrast enhancement (§3.3).

We further design a demodulation algorithm, which leverages the

physical property of the liquid crystal shutters, to extract the bit

streams from the quantized images (§3.4). During the demodulation

process, we also estimate the signal quality (§3.5) for each pixel and

then choose the pixel with the best signal quality as the key point.

Since the pixels on a particular control unit of the tag convey the

same information, focusing on the key point allows low-error-rate

demodulation. The key point is updated dynamically according to

signal quality to track the motion of tags (§3.6).

3.2 Looking-ahead Image Reconstruction

An image reconstruction algorithm converts the spike streams into

intensity-based images that could be analogized to sampling se-

quences in each pixel. We design an image reconstruction algorithm

based on the texture from inter-spike interval [34]. We re�ne the

algorithm with the following observation: spike cameras cannot

achieve high temporal resolution because of the low spiking rate

in dark areas. Therefore, we focus on the bright pixels for further

processing, whereas the dark areas can be discarded for e�ciency.

We only deal with the pixels where the spike interval X stays be-

low a given threshold  , i.e., our look-ahead depth is restricted to

no more than  in the spike streams. Grayscale transformation is

further used to increase the contrast of the reconstructed image,

which can be expressed as:

;86ℎC=4BB =

{

5 (X/ ), X <  

5 (1), >Cℎ4AF8B4

5 is the kernel of the grayscale transformation. We use three trans-

formation kernels in our design, which are: 51 (G) = log
(

1
ć
+ G

)

,

52 (G) =
√
G , and 53 (G) = G . 1/ is added to 51 (G) to avoid log(0).
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3.3 Adaptive Quantization

The quantization algorithm detects the bright pixels and dark pixels

in the transmitter’s zone and quantizes them to +1 and −1 respec-
tively, corresponding to the non-return-to-zero (NRZ) coding we

use. Other pixels (noise) in the environment are set to 0. The idea

is to calculate a shot-time upper bound D??4A and lower bound

;>F4A of luminance for each pixel. We use a derived threshold

(D??4A + ;>F4A )/2 to quantize the signal to +1 or −1. If D??4A and
;>F4A are too close to each other (determined by another threshold

CℎA4B), the pixel is recognized as noise and set to 0. In order to adapt

to changes in brightness,D??4A and ;>F4A are adjusted over time to

the same brightness as the signal. Each pixel is quantized to match

the NRZ coding independently. Our design adapts to di�erent pix-

els when there are multiple tags (each with di�erent brightness)

in the scene, or di�erent pixels within a particular tag where the

illumination is not exactly the same.

3.4 Demodulation

It is challenging to demodulate the signals sent from the VLBC tags

because of the physical properties of the liquid crystal shutters: the

gradual falling edges last more than 4 ms but sharp rising edges

are less than 1 ms [31]. Our demodulation algorithm maintains

=4GC as the next sampling point and does clock recovery when the

level changes. When the quantized signal changes, =4GC is updated

to 8 + 1
3 · ?4A8>3 in the case of rising edge, and 8 + 2

3 · ?4A8>3 for

falling edge to treat the asymmetric edges di�erently. The algorithm

outputs two arrays: 34<>343 and :4~_?>8=C . 34<>343 stores the

most recent data captured on the pixel. Meanwhile, :4~_?>8=C , as

well as 34<>343 , are further to be leveraged to calculate the signal

quality for tracking the key point.

3.5 Signal Quality Estimation

Although one tag in the �eld of view consists of multiple pixels, a

lot of pixels are likely to be interrupted by object mobility and/or

environmental noise. In addition, the grayscale images (output from

§3.2) might also be noisy due to the random spikes from circuit

noise. Therefore, it is crucial to �nd a good sampling position (i.e.,

key point) with high signal quality to ensure the robustness of the

demodulation process. We de�ne signal quality as the sum of two

parts, namely signal similarity and signal luminance. Thus, the

signal quality of the pixel at (G,~) is:

&D0;8C~ [G,~] = U · (8<8;0A8C~ [G,~] + V · !D<8=0=24 [G,~]

We measure the similarity by �nding the number of identical

signals demodulated in the neighborhood, and the luminance by

D??4A obtained during adaptive quantization.

!D<8=0=24 [G,~] = 1

<0G_;D<8=0=24
D??4A [G,~]

(8<8;0A8C~ [G,~] = 1

(2# + 1)2
Į+Ċ
∑

ğ=Į−Ċ

Į+Ċ
∑

Ġ=Į−Ċ
(8<(8, 9, G,~)

(8<(8, 9, G,~) =
(

34<>343 [8, 9], 34<>343 [G,~]
)

ĉ

The value of (·, ·)ĉ is 1 when the last" bits of the two operands

are the same, and 0 otherwise; <0G_;D<8=0=24 is the maximum

possible luminance.
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Figure 3: Experimental setup.

3.6 Key Point Tracking

The output array :4~_?>8=C of §3.4 stands for the key points, i.e.,

the pixels with the best signal quality among other pixels with

the same device ID. The key point is generally at the center of the

shutter, where the signal is the most stable and strongest. But as

the devices move, especially when the relative position between

the tag and the spike camera changes rapidly or unpredictably, the

key point might move in the �eld of view. Therefore, we design a

tracking algorithm to update the position of the key point in nearby

pixels. Given the su�cient sampling rate of the spike camera, an

acceptable key point can be found in the neighboring pixels of the

current key point. If the key point can be tracked accurately and

timely, we can further robustly demodulate the signal when the

devices are mobile and the environment is changing.

During communication, we �rst manually select the estimated

region(s) of the shutter(s) in the FoV of the camera, which can be

further integrated with object detection algorithms [35]. The track-

ing algorithm then selects an initial key point by choosing the point

with the best signal quality among the points with signal quality

above a certain threshold CℎA4B_8=8C . The demodulation algorithm

then uses the initial key point to demodulate the �rst symbol. After-

ward, when a point around the prior key point has a higher signal

quality than the prior key point by a threshold CℎA4B_CA02: , the

point with the highest signal quality in the neighborhood will then

become the new key point.

4 EVALUATION

4.1 Experimental Setup

As shown in Fig. 3a, our VLBC tag is divided into 8 control units, and

di�erent units modulate messages independently, i.e., via spatial

multiplexing. The power consumption of the tag is 0.8 mW during

transmission, and a 6-watt LED enhances the brightness of the

tag. The tag transmits random coded messages (distributed to the

control units) with variant payload lengths and is captured by the
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Figure 4: Evaluation results.

spike camera. The spike camera has a spatial resolution of 250×400,
F/1.4 lens, and 20000 Hz sampling rate. By default, we set X = 64,

CℎA4B = 5, _ = 0.91/ĦěĨğĥĚ where ?4A8>3 is the number of images

in one bit, # = 2, " = 32. U = V = 1, CℎA4B_8=8C = CℎA4B_CA02: =

<0G_@D0;8C~/3where<0G_@D0;8C~ is the maximum possible signal

quality, and the log kernel for the grayscale transformation. We

mainly evaluate the performance of NeuromorphicVLC in terms of

bit error rate, with respect to data rate (the sum of 8 control units),

frame length, mobility, and communication range.

4.2 Experimental Results

Data Rate. The experimental setup is shown in Fig. 3b. We place

the spike camera 50 cm from the VLBC tag, which sends 64-byte

messages at frequencies from 0.8 Kbps to 6.4 Kbps (100 to 800 bps per

control unit). We collect 2000 bytes of messages for each data rate

and calculate the bit error rate. The results are shown in Fig. 4a. At

0.8 to 3.2 Kbps, our systemworks with negligible error in the setting.

The performance of the system degrades rapidly when the data rate

exceeds 4.8 Kbps. A thorough state transition of liquid crystal costs

about 4 ms (250 Hz), whereas a higher data rate incurs insu�cient

state transition and smaller brightness di�erence between the states.

Thanks to the adaptive quantization algorithm, our system can

capture these smaller changes in brightness when the frequency is

less than 600 Hz. The spatial resolution of a camera further enables

8 concurrent links to turboboost the overall throughput. This result

indicates that the spike camera enhances the throughput of VLC

because of its simultaneous high-frequency reception (KHz-level) of

multiple concurrent links (pixels). The spike cameras demonstrate

superiority over standard cameras (which su�er from low frame

rates) and photodiodes (which do not have spatial-domain parallel

reception and support up to 1 Kbps with one photodiode [23]).

Data rate
Bit error rate Packet error rate

4.0 Kbps 4.8 Kbps 5.6 Kbps 4.0 Kbps 4.8 Kbps 5.6 Kbps

8 byte 0.06% 0.04% 1.41% 1.67% 3.57% 53.12%

16 byte 0.00% 0.07% 0.91% 0.00% 3.57% 55.00%

24 byte 0.04% 0.14% 0.42% 2.27% 8.33% 42.86%

32 byte 0.00% 0.04% 0.69% 0.00% 12.50% 55.56%

Table 2: Error rates.

Frame Length.We send a payload of varying lengths from 8 bytes

to 32 bytes, with data rates ranging from 4.0 Kbps to 5.6 Kbps. The

result is shown in Tab. 2. The detailed bit error rate distribution of

4.8 Kbps is shown in Fig. 4b. The bit error rate and packet error

rate increase as the packet length increases. However, within the

data rate of 4.8 Kbps, the bit error rate is still less than 10−3, which
is within the correction ability of error-correcting codes [36].

Mobility.We measure the performance of the system in di�erent

mobile situations. The experimental setup is shown in Fig. 3c. We

place the camera on a cardboard box at a distance of about 1 meter

from the tag. We tested six kinds of mobile cases: static, far,moving,

fast moving, shaking, and turning. In the static and far cases, the

camera is 1 m and 2 m away from the tag. In the moving and faster

cases, we move the tag forward by 0.25 m and 0.5 m in 1 second1.

We swing the camera left and right in the turning case, and pan the

camera up and down in the shaking case. As shown in Fig. 4c, in the

most common scenes of vehicle movement in reality (i.e., moving

and fast moving), the performance of our system is similar to the

static case. The performance gradually decreases as the motion

becomes stronger and more complex. Shaking and turning have

the greatest impact on performance. We attribute the phenomenon

to abrupt changes in illumination patterns, which are to be solved

with a more robust demodulation algorithm.

Communication Distance. We scale down the image captured

from 64-byte payloads and 4.0-Kbps transmission, to simulate dif-

ferent real-world communication distances. To establish the rela-

tionship between the number of pixels for each control unit and

the real-world distance, we use the parameters from a future spike

camera that has the same pixel density as a commercial smartphone

camera, with a FOV of 119°, an aspect ratio of 4:3, and a horizontal

pixel count of 4000. Such an advanced spike camera is not available

currently, but we believe this assumption is reasonable because

spike cameras essentially share similar optics and circuit designs as

standard CMOS vision sensors of existing smartphones. We calcu-

late the equivalent distance of a 1-meter-wide square street sign as

the VLBC tag in the experiment. The results are shown in Fig. 4d. In

the stationary case, the bit error rate is hardly a�ected by a distance

of up to 800 meters. In contrast, the performance is still robust

in 100 meters in the moving case but degrades rapidly because of

frequent failure of key point tracking. Despite the low resolution

(potentially from a distant tag) of the image, the message can still

be demodulated as long as the number of e�ective pixels of the

LCD tag is su�cient for key point tracking.

4.3 Microbenchmarks

We evaluate how the parameters of our image reconstruction algo-

rithm in�uence the error rate performance of demodulation with

two microbenchmarks.

1We would like to note that the relative speed in the FoV of the camera is the most
important factor in the performance. The tested speeds can be equivalent to 90 and
180 km/h when the communication distance is scaled to 100 m, although the in-lab
speeds might seem slow because the distance is only about 1 m.
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Figure 5: Microbenchmarks.

Look-ahead Depth  . The hyperparameter  in §3.2 indicates the

depth of the spike stream used for grayscale image reconstruction.

It a�ects the minimum brightness of the reconstructed grayscale

image in our reconstruction algorithm. We use di�erent  settings

to reconstruct and further demodulate the experiment data sent at

4.0 Kbps, and show the results in Fig. 5a. In our setting, we observe

that a spike is generated every 10 ~ 15 samples in the spike stream

when the tag is dark (i.e., the liquid crystal shutter blocks light to

pass), and the interval decreases to 2 ~ 5 when the tag becomes

bright. Therefore, when is set larger than 16, the BER performance

is not in�uenced by our reconstruction algorithm that omits the

dark areas. In practical applications,  (and the camera aperture)

should be adjusted properly to control the amount of incident light

for e�ective and e�cient image reconstruction.

Grayscale Transformation Kernel. As illustrated in §3.2, the

grayscale transform kernel a�ects the contrast of the image. The

tags are generally brighter than the nearby environment thanks to

retrore�ection. Therefore, a kernel with a larger degree of nonlin-

earity would increase the contrast in the bright parts of the image,

which is typically the area of interest for communication thanks

to retrore�ection. As a result, the log kernel performs best in our

experiments as shown in Fig. 5b.

5 CONCLUSION AND OPPORTUNITIES

In this paper, we proposed and prototyped NeuromorphicVLC that

leverages a neuromorphic camera to improve the performance of

vehicular VLC. We have shown that the neuromorphic camera, as

a novel class of optical receivers, can make the best of the two

conventional VLC receivers, i.e., photodiodes and standard cam-

eras. Although NeuromorphicVLC is primarily designed for V2X

networks, the introduction of neuromorphic cameras would also

bene�t a wider range of (indoor stationary) VLC systems by en-

ablingmassive concurrent communication links, which chimes with

the massive MIMO technology in the RF domain [37]. In-lab exper-

imental results have preliminarily demonstrated the feasibility of

NeuromorphicVLC. Future research opportunities may include:

Communication Distance. An adequate distance of communi-

cation is critical to allow the vehicles to have enough space and

time to take action. In addition to the number of available pixels

evaluated in this paper, the limited resolution of optical imaging

from atmospheric disturbance, inaccurate focusing, and imperfect

lenses might also be bottlenecks of communication distance. A

novel scanning light-�eld imaging sensor [38] can potentially al-

leviate this issue. Besides, a vehicle may generate high-frequency

vibrations that would incur motion blurring of the image and can

be potentially handled with advanced deblurring algorithms [39].

From Communication to Networking. In a V2X network, mul-

tiple tags may simultaneously appear in the FoV of one vehicle. An

e�ective multiple access scheme would be important to the utility

of the channel. Thanks to the imaging capability of cameras, the

tags can be distinguished from each other in the spatial domain,

so a straightforward multiple access scheme would work well, at a

cost of extra complexity of the demodulation algorithm. Various

active light sources (e.g., LCD screens and LEDs) may also function

as VLC transmitters and appear simultaneously in the network.

Such active transmitters may bene�t reliability because they are

less a�ected by ambient illumination. However, they have high

power consumption (require external power source) and thus are

less applicable to the existing tra�c sign infrastructure, especially

in rural areas. A well-designed network should coordinate both

active and passive (e.g., VLBC tags in this paper) transmitters to

take full advantage of the two types of devices.

Integrated Sensing and Communication. State-of-the-art au-

tonomous vehicles typically use cameras to perform computer vi-

sion perception. If VLC is to be received by a conventional camera

in a real-world application, both the sensing and the communi-

cation performance would be degraded due to the rolling-shutter

e�ect, and can only be alleviated with a dedicated machine learning

algorithm [40] to our knowledge. NeuromorphicVLC, without the

impact of the rolling-shutter e�ect, presents a more fundamental

step towards integrated sensing and communication. With the high

temporal resolution (oversampling), neuromorphic cameras have

the ability to separate the mutual interference between communi-

cation and sensing (perception) towards an integrated design.

Real-world Deployment. Real-world deployment may pose more

challenges to NeuromorphicVLC and any other vehicular VLC sys-

tems with similar settings. There are numerous factors that may

in�uence the performance of vehicular VLC, such as relative orien-

tations, mobile (speed, turning, shaking, phase misalignment, etc. )

scenarios, adverse weather/lighting conditions and sudden changes,

background luminous and illuminated objects (which may also be

moving), and random occlusions. We believe more experiences in

the deployment of vehicular VLC systems are helpful to discover

more practical challenges and raise corresponding solutions. We

also believe a large-scale real-world benchmark would help the

community to evaluate di�erent systems with substantive quantita-

tive backing. However, such a benchmark is still missing in today’s

literature to our knowledge, and we believe it would greatly help

the community to explore this domain.
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