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ABSTRACT
Using geophones to sense bed vibrations caused by ballistic force
has shown great potential in monitoring a person’s heart rate during
sleep. It does not require a special ma�ress or sheets, and the user
is free to move around and change position during sleep. Earlier
work has studied how to process the geophone signal to detect
heartbeats when a single subject occupies the entire bed. In this
study, we develop a system called VitalMon, aiming to monitor a
person’s respiratory rate as well as heart rate, even when she is
sharing a bed with another person. In such situations, the vibrations
from both persons are mixed together. VitalMon �rst separates the
two heartbeat signals, and then distinguishes the respiration signal
from the heartbeat signal for each person. Our heartbeat separation
algorithm relies on the spatial di�erence between two signal sources
with respect to each vibration sensor, and our respiration extraction
algorithm deciphers the breathing rate embedded in amplitude
�uctuation of the heartbeat signal.

We have developed a prototype bed to evaluate the proposed
algorithms. A total of 86 subjects participated in our study, and
we collected 5084 geophone samples, totaling 56 hours of data. We
show that our technique is accurate – its breathing rate estimation
error for a single person is 0.38 breaths per minute (median error
is 0.22 breaths per minute), heart rate estimation error when two
persons share a bed is 1.90 beats per minute (median error is 0.72
beats per minute), and breathing rate estimation error when two
persons share a bed is 2.62 breaths per minute (median error is 1.95
breaths per minute). By varying sleeping posture and ma�ress type,
we show that our system can work in many di�erent scenarios.
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•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools;

KEYWORDS
Vital Signs, Geophone, Unobtrusive Sensing, Blind Source Separa-
tion, Time-frequency Masking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’17, Del�, Netherlands
© 2017 ACM. 978-1-4503-5459-2/17/11. . . $15.00
DOI: 10.1145/3131672.3131679

ACM Reference format:
Zhenhua Jia †, Amelie Bonde §, Sugang Li †, Chenren Xu ‡, Jingxian Wang
§, Yanyong Zhang †, Richard E. Howard †, Pei Zhang §. 2017. Monitoring a
Person’s Heart Rate and Respiratory Rate on a Shared Bed Using Geophones.
In Proceedings of SenSys ’17, Del�, Netherlands, November 6–8, 2017, 14 pages.
DOI: 10.1145/3131672.3131679

1 INTRODUCTION
Monitoring a person’s vital signs during sleep, especially heart rate
and respiratory rate, has received a great deal of a�ention in the
last few years. Many systems [2, 3, 10, 18, 21, 22, 25, 27, 30, 32, 40,
49, 51, 52, 54] have been proposed in both industry and academia,
promising to potentially serve as a proxy to various health/medical
applications, such as monitoring sleep quality [53], detecting ob-
structive sleep apnea [38], evaluating the risk of heart failure un-
der certain situations [29, 39], and even monitoring patients with
Parkinson’s diseases [12], etc.

Most of these systems monitor vital signs by measuring one or
more aspects of the ballistic force during a heartbeat pulse, ranging
from force magnitude [18, 40], pressure [25, 49], to the resulting
position change [10, 21, 32, 51, 52, 54]. Even though they are able to
perform accurate monitoring, most of them are quite cumbersome
to install on a bed (e.g., requiring special ma�ress/sheets, requiring
the user to keep the same sleeping position/posture, etc), or are
inconvenient/invasive to the users.

Recent work [27] has shown that the geophone sensor [4], which
measures the vibration velocity caused by ballistic force, provides
a viable alternative in detecting heart rate during sleep without
having the above problems of the existing systems. �anks to
being sensitive to even minute vibrations, geophones o�er accurate
monitoring, are easy to install, can be installed anywhere on the
bed frame, and do not assume any sleeping pa�erns from the user.

Despite these nice features, a great deal of e�ort is still required to
build a full-�edged vital sign monitoring system using the geophone
sensor. First, we need to detect respiration using geophones, which
is very di�cult because the vibrations caused by respiration are
weak and the frequency components are below the extremely low
frequency (ELF) band (<1 Hz). �us geophones don’t capture those
vibrations well. Second, we need to extract the target subject’s
heart rate from the mixed vibration signal when multiple people
share a bed. �e di�culty of this problem is mainly due to the fact
that the heartbeat vibration signals are mixed together in the time
domain and the frequency components from multiple people can be
quite close to each other. In this paper, we seek to develop VitalMon,
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Figure 1: (a) �e geophone signal in the frequency domain,
with a single subject on the bed, and (b) the geophone sig-
nal in the frequency domain, with two subjects on the bed.
Peaks caused by heartbeats and harmonics are obvious in (a),
making single-subject heart rate monitoring rather simple.
When we have two subjects on one bed, however, heartbeat
peaks are less obvious and hard to detect directly.

an in-bed heart rate and respiratory rate monitoring system using
geophones, and set out to address these two challenges.

Challenges of Respiration Monitoring: Detecting respiration
using geophones is challenging. A geophone is naturally a veloc-
ity sensor and a second-order high-pass �lter, thus insensitive to
low-speed low-frequency vibrations. Unfortunately, the vibration
speed of the thoracic cavity during each breath is slow compared
to the ballistic movement of a heartbeat, and the respiration signal
frequency is low.

In general, the vibration signal caused by each respiration event
is so weak that the respiration signal is buried under noise from
the environment. In this paper, we propose an alternative approach
by modeling the geophone signal as a signal a�er amplitude mod-
ulation (AM). Here, the heartbeat signal is our carrier signal and
the respiration signal is our information signal. �en, we use a
square-law amplitude demodulation (SLD) algorithm [9] combined
with autocorrelation function (ACF) [15] to estimate the respiratory
rate.

Challenges of Heart Rate Monitoring: Even though earlier
work [27] has shown that geophones are suitable to monitor heart
rate when the person occupies a bed alone, monitoring a person’s
heart rate when he/she shares the bed with others remains an un-
solved challenge. �e heartbeat vibration signals from the bed
occupants are mixed together in the time domain during propa-
gation, and the frequency of the heartbeat signals and respiration
signals from multiple people can be very close in the frequency do-
main. Figures 1 (a) and (b) show two Fast Fourier Transform (FFT)
examples of the vibration signals when we have (a) one person on
a bed, with a heart rate of 76.7 BPMhr

1 (about 1.28 Hz), and (b) two
people on one bed, with heart rates of 62.8 (about 1.05 Hz) and 59.2
BPMhr (about 0.99 Hz), respectively. It is hard to tell there are two
heartbeats from the mixed signal. In fact, the amplitude at di�erent
frequencies is even smaller than when we had only one subject,
mainly due to the relative phase delay between two heartbeat sig-
nals. Furthermore, heartbeats over time are not perfectly periodic.
�erefore, it is hard to separate them in both time and frequency

1In this paper, we use BPMhr to denote ‘beats per minutes’ for heart rate and BPMr r
to denote ‘breaths per minute’ for respiratory rate.

domains. In this study, we address this challenge by taking advan-
tage of the spatial di�erences between two heartbeats. Suppose we
have two geophones G1 and G2. As far as the source closer to G1 is
concerned, its vibration signal captured byG1 has higher amplitude
and less phase delay compared to the same source’s signal captured
by geophone G2. Based upon this spatial di�erence, we can extract
the target source’s signal from the mixture.

Considering the similarity between heartbeat signals and human
sound signals, and how they are similarly mixed together in real
life, we turn to literature in the acoustic �eld for wisdom. Popu-
lar solutions include Independent Component Analysis (ICA) [26],
Principal Component Analysis (PCA) [28], etc. Among the solu-
tions that have been proposed, Degenerate Unmixing Estimation
Technique (DUET) [48, 55] is well-suited to address our needs be-
cause (1) unlike ICA, it can tolerate propagation delays; and (2)
the sudden change in a heartbeat signal may make consecutive
heartbeat pulses look uncorrelated, which may trick some methods
into treating those signals as independent, but has less impact on
the DUET because it does not rely solely on such correlation.

Applying DUET to our heartbeat separation problem is not
straightforward, due to the unique characteristics of heartbeat
signals that propagate through a bed. Firstly, the fundamental
frequency of a heartbeat is signi�cantly lower than that of the au-
dio signal. Its average range is from 0.33 Hz to 4 Hz, corresponding
to 20 BPMhr (e.g., the heart rate for patients with heart block dis-
ease) to 240 BPMhr (the maximum heartbeat rate estimated based
on the minimum cardiac refractory period of a human being), re-
spectively. As a result, we need high frequency resolution when we
extract individual heartbeats from a mixture, which is particularly
challenging for us because heartbeats are not perfectly periodic
and stable.

Secondly, the bed and ma�ress have much more complex propa-
gation properties than air. �e grouping velocity of any vibration
through a bed is around 1 km/s, whose form is a complex mechani-
cal resonance depending on the details of the entire system – e.g.,
the human body, the bed, the geophone, and the �oor, etc.

In addition, the structure of a modern bed o�en allows vibra-
tions to last for at least a few cycles, and for a heartbeat signal,
the preceding heartbeat may a�ect the subsequent ones. Because
of these complex propagation properties, each heartbeat source’s
spatial signatures become less separable than audio signals, making
heartbeat separation a much harder problem.

Our Contributions: In this study, we carefully design the Vital-
Mon system to solve these challenges. For heart rate estimation, we
take advantage of the high frequency components of the heartbeat
signals, such as the harmonics, so that we have larger frequency
di�erences between di�erent heartbeat signals to enable smaller
window sizes. For respiratory rate estimation, we model the signal
as AM and use the modulated signal itself to achieve demodula-
tion, which allows us to apply demodulation without knowing the
frequency of the carrier signal (heartbeats in our case). �rough
detailed experimentation, we show that VitalMon can successfully
monitor the target person’s respiration and heart rate, even when
he/she shares the bed with others. We measured a total of 5084
data sets and collected vital sign signals over 56 hours2. �e overall
2Our studies were approved by the Institutional Review Board (IRB) of our institution.
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absolute estimation error for heart rate and respiratory rate is at
1.90 BPMhr and 2.62 BPMr r , respectively, and the median is 0.72
BPMhr and 1.95 BPMr r .

In summary, our work has made the following contributions:
(1) We have developed a respiration detection technique based

on square-law amplitude demodulation that can estimate
the respiratory rate from the vibration signals. To our
best knowledge, this is the �rst paper which shows that
the overall amplitude of a heartbeat signal is modulated to
carry the respiration signal and we show our technique can
successfully demodulate the respiratory rate information.

(2) We have developed a heartbeat separation technique that
can accurately track the heartbeat of a speci�c person when
there are multiple people on one bed. In developing our
technique, we have taken into consideration the unique
properties of heartbeat signals as well as the complex prop-
agation properties of the bed and ma�ress.

(3) We have developed a testbed with multiple vibration sen-
sors (geophones in our case). In developing the testbed,
we have taken into consideration the features of geophone
sensors and their placement.

2 BACKGROUND AND OVERVIEW
In this section, we �rst provide the background on ballistocardio-
graph (BCG) based heart rate and respiratory rate monitoring. �en
we present an overview of our geophone-based BCG measurement
system.

2.1 BCG Based Heart Rate and Respiratory
Rate Monitoring

Many BCG based systems have been developed to monitor a per-
son’s physiological signs by sensing the ballistic force on the heart.
�e earliest work we can �nd was done by J. W. Gordon in 1877 [23].
He designed an analog BCG system which consists of (1) a special
designed ma�ress that is small but sti�, (2) four ropes to hang the
ma�ress to the ceiling in a room, (3) a bunch of levers to amplify
the analog vibration signal, and (4) a weighing machine to record
the signal on paper. Despite of the cumbersome nature of such
a system, it successfully captured the weak vibrations from each
heartbeat. Later, many BCG-based systems have been proposed
and we categorize them below based on the sensor types:

(1) Force sensors [18, 40], commonly installed under bed posts,
measure the force change due to the ballistic force. �e
idea is straightforward, but it requires a fairly high sensi-
tivity since it tries to detect a weak force change under the
in�uence of the gravity of the bed and people.

(2) Air/water pressure sensors [25, 34, 49], usually sandwiched
between ma�ress and bed frame, measure the pressure
exerted by the ballistic force. Due to the limitation of the
sensitivity, the sensor should be installed under the thorax
area of the human body, which requires prior knowledge
of the person’s location on the bed.

(3) Position sensors measure the position change due to the
ballistic force. Position change can be detected by a vari-
ety of means. For example, an optical sensor can detect

position change when it is embedded in a ma�ress and
placed in the thorax area [51, 52]; an ultrasound-based sen-
sor can detect position change [54], but requires mounting
a plywood board and an aluminum guide rail on the bed
frame; a wireless-based system can also detect position
change [10], but requires additional wireless infrastructure
and could be easily interfered by other wireless signals in
the environment.

(4) Accelerometer sensors can detect the vibration acceleration
caused by the ballistic force, such as a chest belt [45] or
the commercial system in [5]. However, such a system is
invasive and uncomfortable.

(5) Velocity sensors, such as geophones [27], measure the
speed of vibrations caused by the ballistic force. �ey can
be a�ached anywhere on a bed, and are unobtrusive and
convenient.

2.2 VitalMon Overview
Among the above BCG monitoring systems, the velocity sensing
approach o�ers accurate, unobtrusive, low-cost, and robust mon-
itoring, as shown in a recent study [27]. In this study, we use a
commercial o�-the-shelf geophone, which is a moving coil based
velocity sensor.

Geophones, traditionally used to measure seismic waves in geol-
ogy, have been widely used in measuring vibrations from di�erent
sources. Recently, geophones have been used in several appli-
cations: building occupancy estimation by monitoring ambient
vibration [41], indoor person localization via �oor vibration [36],
interaction tracking via surface vibration [42], heart rate estimation
by monitoring bed vibration during sleep [27], etc. A geophone
consists of a spring-mounted magnetic mass moving within a coil.
It converts the physical vibration from the environment into an elec-
trical voltage. �e geophone we use, SM-24 Geophone Elements [4],
is naturally a second-order high-pass �lter and its natural frequency
is 10 Hz.

�e overview of VitalMon is illustrated in Figure 2. In Vital-
Mon, our objective is to continuously monitor the heart rate and
breathing rate of our user (say, Alice), whether Alice occupies a bed
alone or shares a bed with Bob. For monitoring purposes, we use
the same number of geophones as the number of persons on a bed.
When both Alice and Bob are present, we use two geophones to
measure the vibrations caused by their heartbeats and breathing.
Since heartbeats lead to much more pronounced vibrations than
breathing, we �rst extract Alice’s heartbeat signals (the amplitude
and frequency) from the geophone signals. �en we further extract
the respiration signal from her heartbeat signals. Both steps intro-
duce serious challenges, and we have devised e�cient techniques
to address them. In the following two sections, we present our
proposed signal processing techniques – we �rst focus on how to
extract respiration from heartbeat signals, and then focus on how
to extract individual heartbeat signals from the mixture signal.

3 MONITORING RESPIRATORY RATE USING
GEOPHONE

In this section, we discuss how we monitor the respiratory rate
using geophones, assuming there is only one person on a bed.
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Figure 2: �e overview of VitalMon. When two persons (Alice and Bob) share a bed, we use two geophones to capture the
mixed vibration signals, and then perform a sequence of signal processing steps to monitor the heart rate and breathing rate
of our target user (say, Alice).
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Figure 3: (a)�e geophone signal in the frequency domain, with a single person on the bed, (b) the same geophone signal as in
(a), but in the time domain, (c) the geophone signal with a single person holding his breath, and (d) the geophone signal with
a single person breathing normally. In (b) and (d), the subject’s breathing rate is embedded in the heartbeat signal amplitude
�uctuation, or the envelope.

We �rst formulate the respiration signal extraction problem as an
amplitude modulation problem. We then explain the di�erence
between our problem and the traditional amplitude problem in
communications. Finally, we present our amplitude demodulation
algorithm.

3.1 Formulating Respiration Signals as
Amplitude Modulation

�e most straightforward approach to extracting the respiration
signal would involve directly performing FFT on the geophone
signal and then looking for the frequency component corresponding
to respiration. However, as shown in Figure 3 (a), we don’t observe
any obvious respiration frequency components (that should be
below 1 Hz) from the geophone signal. �is is because a geophone
is a natural second-order high-pass �lter, insensitive to motions
whose frequencies are below a certain threshold (referred to as
detection threshold, 8.4 Hz in our case). �e frequency components
of respiration are usually lower than this detection threshold. Also,
the velocity of breathing is quite slow, which makes it even harder
to detect by geophones. As a result, this direct approach fails to
detect respiration signals.

On the other hand, a closer look at the geophone signal reveals
an interesting phenomenon – the amplitude of the geophone signal
�uctuates in a periodic fashion, and the �uctuation frequency is
very close to the subject’s breathing frequency. For example, in
Figure 3(b), the subject’s respiratory rate is 15.04 BPMr r , which
is very close to the amplitude �uctuation frequency of 0.251 Hz.
To further investigate this observation, we conducted an experi-
ment and compared the geophone signals when the subject held
his breath with the signals when the subject breathed normally.
Figure 3(c) shows the geophone signal when a subject lies on a bed
while holding his breath for at least 15 seconds, while Figure 3(d)
shows the geophone signal when the subject breathes at a rate
of 10 BPMr r . In both �gures, we plot the estimated envelope of
the signals. It is clear that there is a direct relationship between
breathing and the amplitude �uctuation.

A�er deliberation, we conclude that respiration causes the am-
plitude �uctuation of the geophone signal. It can be explained as
follows. Breathing changes the amount of air in the chest, which
in turn changes the e�ective ‘sti�ness’ of the chest and the amount
of energy loss of the heartbeat signal a�er propagation through
the chest. As such, the relationship between the respiration signal
and the heartbeat signal can be modeled as amplitude modulation
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(AM) in communications [46]. Here, the heartbeat signal, including
its fundamental frequency and the associated harmonics, is the
carrier signal, the respiration signal is the information signal, and
the geophone signal is the signal a�er amplitude modulation.

Following amplitude modulation, we can model the three signals
as follows:

s(t) = sr (t)
N∑
j=1

shj (t),

sr (t) = ar × cos(2π fr t + θi ),
shj (t) = ahj × cos(2π fhj t + θhj ), j = 1, 2, ...,N ,

(1)

where s(t) denotes the source signal for single person case, sr de-
notes the respiration signal and shj denotes the j-th harmonics of
the heartbeat signal. Note, sh1 means the fundamental frequency
of the heartbeat signal.

Next, we devise a suitable amplitude demodulation algorithm to
extract the respiratory rate information from the geophone signal.
However, our problem signi�cantly di�ers from the conventional
RF amplitude modulation problem in that the RF signal’s carrier
frequencies are known beforehand, while the frequency of our
carrier signal – the heartbeat signal – remains unknown. To make
ma�ers worse, unlike the RF signal which has a single carrier
frequency, the heartbeat signal includes a fundamental frequency
and multiple higher frequency components.

Due to these di�erences, typical detectors for demodulating AM
signals that were proposed for RF signals are ill suited for our
problem. For example, an envelope detector, such as the Moving
Root-Mean-Square (RMS) envelopes approach [43] or the analytic
signal approach [31], is sensitive to the choice of the window size;
window size depends on the frequency of the information signal,
which is unknown in our case. �e RMS envelopes approach also
doesn’t work well with an impulse-like signal such as the ballistic
force within each heartbeat. Meanwhile, a product detector [44]
usually requires knowledge of the carrier frequency, which is again
unknown in our case. Finally, neither of these detectors work
well when carrier signals are quasi-periodic, like heartbeats in our
system.

�erefore, we choose the square-law demodulation approach in
this study, using the geophone signal as the carrier signal which can
demodulate itself to extract the information signal (the respiration
signal in our case). AM during propagation shi�s the respiration
frequency components to a higher frequency range (around the
heartbeat frequency range). By squaring the signal, we reverse the
frequency shi� and can separate the respiration signal by applying
a low-pass �lter.

3.2 Respiratory Rate Estimation
Next, we present our respiratory rate estimation algorithm based
on the square-law demodulation.

Before presenting our algorithm, we �rst discuss how we es-
timate the environmental noise and eliminate its impact. We do
so by recording the geophone signal when the bed is empty and
computing the FFT. �e FFT results show that the majority of the
noise is above 11 Hz. We note that our lab environment has a con-
siderably greater noise level than an average bedroom environment
as we have a few hundred computers sharing the same lab space,
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Figure 4: FFT of the power signal a�er our amplitude demod-
ulation. We observe a peak at 0.253 Hz (marked with a red
inverted triangle), which corresponds to a respiratory rate
of 15.18 BPMr r and agrees with the ground truth measured
by a Zephyr strip [8].

most of which are equipped with powerful fans. Next, we collect
the geophone signal when a single subject is lying on a bed. �e
corresponding FFT results show the frequency components of our
target signals (heartbeat signals and respiration signals) are below
15 Hz. �erefore, we believe a high-order low-pass �lter with a
cuto� frequency at 10 Hz can e�ectively minimize the impact of
environmental noise.

Next, we perform amplitude demodulation by multiplying the
geophone signal with itself. �at is, we treat the geophone signal
as its own carrier signal. For our objective of estimating heart
rate and respiratory rate, we only need to recover their frequency
components, but not phase information. As such, we can simply set
both signals’ phases to be 0. �en, based on Equation 1, we have

s2(t) = (sr ∗
N∑
j=1

shj )
2

= a′i ∗ cos(4π fr t) +
2N∑
j=1
(a′hj
∗ cos(2π fhj t))

+

2N∑
j=1
(a′h−j

∗ cos(2π (fhj − 2fr )t))

+

2N∑
j=1
(a′h+j

∗ cos(2π (fhj + 2fr )t))

(2)

�e multiplication result consists of several low frequency com-
ponents that are less than 1Hz and many frequency components
that are greater than or equal to 1Hz. As we observe from Equa-
tion 2, the lowest frequency component, a1 ∗ cos(4π fr t), has twice
the frequency of the respiration signal. If we can identify this
particular component, we can derive the respiration frequency.

Figure 4 shows an example of the demodulation result. A�er
applying a low-pass �lter with a cuto� frequency of 0.6 Hz, we
successfully remove the high frequency energy. �en, we compute
the square root of the �ltered signal in time domain and obtain the
low frequency signal in frequency domain at 0.253 Hz (about 15.2
BPMr r ) which is the respiratory rate.
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4 MONITORING TARGET HEART RATE
WHEN MULTIPLE SUBJECTS ARE PRESENT

In this section, we discuss how we monitor the heart rate for the
target person – say, Alice – when she shares a bed with Bob. In
order to achieve this objective, we need to be able to extract Alice’s
heartbeat signal from the geophone signal in which both heartbeat
signals are lumped together. In this study, we aim to separate the
two heartbeat signals (their frequency components) so that we can
extract either if needed. �at way we can monitor the physiological
signs for both people on the bed.

4.1 Modeling Mixture Signals
We �rst formulate the heartbeat separation problem by formally
de�ning the mixed signal [35]. Suppose we have 2 signal sources s1
and s2, with signals s1(t) and s2(t), respectively. Suppose we have
2 geophone receivers x1 and x2, which receive mixed signals x1(t)
and x2(t) such that

xk (t) =
2∑
j=1

ak, jsj (t − δk, j ),k = 1, 2, (3)

where ak, j and δk, j are the a�enuation coe�cients and time delay
parameters associated with the path from sj to xk . Since we don’t
have prior knowledge of the true signal a�enuation and delay in
our system, we rely on relative signal a�enuation and delay. Here,
we consider x1(t) as reference signal (with a1,1 = a1,2 = 1 and
δ1,1 = δ1,2 = 0), and compare x2(t) to it to obtain the corresponding
relative a�enuation and delay coe�cients.

A�er calculating the short-time Fourier transform (STFT) of
x1(t) and x2(t), we obtain their time-frequency representation:[

x̂1(τ ,ω)
x̂2(τ ,ω)

]
= P2×2

[
ŝ1(τ ,ω)
ŝ2(τ ,ω)

]
, (4)

where the propagation matrix P2×2 is de�ned as

P2×2 =

[
1 1

a2,1e−iωδ2,1 a2,2e−iωδ2,2

]
. (5)

In Figure 5, We illustrate our experiment se�ing which includes
two subjects (s1 and s2) and two geophone sensors (x1 and x2). �e
direct propagation paths from s1 to both geophone sensors are
marked in green, and the paths from s2 to both geophone sensors
are marked in brown. Using the same color, we also mark the
corresponding a�enuation coe�cients and time delay parameters.

4.2 Background on Blind Source Separation
and the DUET Algorithm

Our heartbeat separation problem is similar to the cocktail party
problem [20] where an arbitrary number of people are talking
simultaneously at a cocktail party and a listener is trying to identify
and follow one particular discussion. DUET [48, 55] has proven to
be a good solution to the cocktail party problem. It computes the
symmetric a�enuation and relative delay of the signals, calculates
the energy histogram within di�erent ranges of a�enuation-delay
values, and �nally identi�es each energy peak as a signal source.

�is is suitable for the cocktail party problem because it cleverly
leverages the unique properties of audio signals. Audio signals have
spatial signatures as the a�enuation and delay parameters between

s1 s2

x2x1

(1,0) (a2,δ2 )

(1,0) (a1,δ1 )

Figure 5: We illustrate our experiment setting, which in-
cludes two subjects (s1 and s2) and two geophone sensors (x1
and x2). Wemark the corresponding attenuation coe�cients
and time delay parameters on the �gure, using green for one
source and brown for the other source.

an audio source and the receiver are unique. In addition, mixture
audio signals usually have sparse frequency components because
it is rare to have two people talking at the same frequency at the
same time.

In this study, we choose to adopt DUET due to the similarity
between audio signals and heartbeat signals. Firstly, both heartbeat
signals and audio signals have a fundamental frequency component
and high frequency components (harmonics). Secondly, we have no
control of, nor a priori knowledge of, the frequencies of heartbeat
signals or audio signals. �irdly, the paths between di�erent sources
and receivers have diversity, making it possible to establish spatial
features for each source.

Heartbeat signals, however, have their own characteristics. For
examples, heartbeat signals have much narrower frequency ranges
than audio signals; heartbeats from multiple people have less fre-
quency di�erence than audio signals; the frequency of heartbeat
signals �uctuates from beat to beat while audio signals are consis-
tent for at least a few cycles. �ese characteristics may not satisfy
the implicit assumptions made by DUET and impose challenges in
our system design. We will explain how we tackle these challenges
in the rest of this section.

4.3 Heartbeat Signal Separation and Heart Rate
Estimation

Next, we present our algorithm that separates individual heartbeat
signals and estimates each person’s heart rate.

Here we assume we have two synchronized geophone receivers
that continuously collect mixed signals from two subjects. We
partition the signals into processing windows of equal length (40
seconds) and apply the following signal processing steps on both
signals within the same window:

(1) Filtering. We apply a suitable low-pass �lter to �lter out
environmental noise (discussed in Section 4.3.1), and then
remove the direct current (DC) component from the �ltered
signal;

(2) STFT. We compute the STFT results of the two �ltered
signals (discussed in Section 4.3.2);
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Figure 6: Overview of our heartbeat separation algorithm.

(a) (b)

Figure 7: (a) A normal Butterworth �lter introduces phase
delays, while (b) a forward-backward �lter can leave the �l-
tered signal in perfect alignment with the original signal.

(3) Spatial Signatures. We calculate symmetric a�enuation and
relative delay between the two STFT results (discussed in
Section 4.3.3);

(4) Energy Clustering. We calculate the energy of each fre-
quency bin (we partition the entire frequency range into
discrete bins) and sum the energy values for di�erent
ranges of symmetric a�enuation and relative delay. We
then rebuild the signals in the new coordinate system with
the relative delay on x-axis, symmetric a�enuation on y-
axis and the energy histogram on z-axis (discussed in Sec-
tion 4.3.3);

(5) Binary Masking. We identify the coordinates of the peaks
in this new three-dimensional space and apply a binary
mask to separate peaks that represent di�erent heartbeats
(discussed in Section 4.3.4);

(6) Heart Rate Estimation. We convert the signal from the fre-
quency domain back to the time domain, and then estimate
the heart rate using the method discussed in [13, 27]. We
also estimate the respiratory rate using the algorithm in
Section 3.

Figure 6 pictorially shows these steps involved in our algorithm.

4.3.1 FFT and Low-pass Filtering for Noise Reduction. Geophone
signals are usually highly noisy because the sensor is quite sensitive,
and therefore e�cient noise reduction becomes an essential step.
We note that, as mentioned in Section 3, most of the noise is above
11 Hz while the target signals are mainly below 15 Hz. �erefore, a
high-order Bu�erworth low-pass �lter with cut-o� frequency at 10
Hz can e�ectively reduce the noise.

Since DUET separates signals from di�erent sources using their
spatial signatures, we want to make sure the �ltering step does

Figure 8: �e instantaneous heart rates of two participates
at a calm state, �uctuate around their average heart rates,
57.2 and 63.1 BPMhr .

not cause any signal distortions that may change the signal sig-
nature. For this purpose, we perform a high-order low-pass But-
terworth �lter, followed with a forward-backward digital �ltering
technique [50]. By applying this forward-backward digital �lter
technique in both directions, the phase distortions caused by the
two �lters cancel out each other. Eventually, we introduce no phase
distortion at all.

Shown in Figure 7(b), the signal a�er the forward-backward dig-
ital �lter aligns perfectly with the original signal, while a normal
high-order low-pass Bu�erworth �lter introduces delay between
the original signal and the resulting signal (Figure 7(a)). In addition,
the forward-backward �lter also squares the amplitude response.
Finally, a�er applying the low-pass �lter, we remove the DC com-
ponent since it contains no heartbeat related information.

4.3.2 Time-Frequency Representation for Locating Spatial Infor-
mation. In this step, we obtain the time-frequency representation
of the �ltered signals. We choose STFT for this purpose.

Lack of Short-Term Frequency Stability: Audio signals usually
have stable frequency components within a short time window.
Rabiner [47] pointed out that audio signal frequencies within a 45
ms time window can be considered stable. However, this is not
true for heartbeats. As shown in Figure 8, the instantaneous heart
rate �uctuates considerably around the average heart rate. Hence,
compared to the audio signal, the heartbeat signal’s frequency
varies a lot more from cycle to cycle. As a result, when we compute
STFT, we have to further partition the signals within a processing
window of 40 seconds into smaller segments.
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Insu�cient Frequency Di�erence: For any pair of signals that
have the same length, s1(t) and s2(t), they are W-disjoint orthogonal
when they satisfy:

ŝ1(τ ,ω)ŝ2(τ ,ω) = 0,∀τ ,ω, (6)
where ŝ1(τ ,ω) and ŝ2(τ ,ω) are the time-frequency representation
of signal s1(t) and s2(t), respectively. It means that the energy from
one source is much larger than the other source.

�is assumption doesn’t hold true for signals at the same fre-
quency. �e sum of any two signals at the same frequency, regard-
less of their amplitude and phase values, constitutes a single signal
at that frequency. As a result, if we don’t have additional informa-
tion about the two signals’ amplitude and phase information, we
can’t separate them since there are an in�nite number of ways of
decomposing the mixed signal. As such, heartbeat separation does
not work if the individual heartbeats are at the same frequency.

�ough it is rare for two people to have exactly the same heart-
beats, it is quite o�en that their heartbeat frequencies are close to
each other due to the small heartbeat frequency range. For example,
let us consider two heartbeat signals whose frequencies are 1 Hz
and 1.1 Hz respectively. In order to discriminate the two signals, we
actually need at least a 10-second signal to see the di�erence: one
has 10 beats within 10s, while the other one has 11 beats. However,
it is very hard, if not impossible, for a heartbeat signal to hold
steady at a the same frequency for a duration of 10 seconds.

Our Solution: In VitalMon, we deal with these challenges by the
following tricks. First, we focus on the heartbeat signal’s high
frequency components for more sparsity. For example, for heartbeat
signals at 1 Hz and 1.1 Hz, their eighth harmonics – 8 Hz and 8.8
Hz respectively – have greater frequency di�erence. Second, we
partition each processing window (40 seconds) into much smaller
slots to ensure the two signals are W-disjoint orthogonal during
each slot. Figure 9 plots the heart rate estimation error with di�erent
slot durations. Generally, a slot duration less than 1.7 seconds leads
to much lower estimation error. In particular, we �nd the slot
duration around 0.7 second yields the lowest estimation error, 1.90
BPMhr . In our evaluation, we then adopt a slot duration of 0.7
second for our heartbeat separation and extraction.

4.3.3 Calculating Symmetric A�enuation and Relative Delay.
From the STFT results, we are able to compute the relative at-
tenuation and relative delay as in [55]:

â(τ ,ω) =

���� x̂2(τ ,ω)
x̂1(τ ,ω)

���� , (7)

θ̂ (τ ,ω) = −
1
ω
]
x̂2(τ ,ω)
x̂1(τ ,ω)

, (8)

where x̂1(τ ,ω), x̂2(τ ,ω) are the time-frequency representation from
the STFT results, and ω is the frequency vector. Considering that
symmetric a�enuation yields higher resolutions when signals from
the same source get di�erent a�enuation at di�erent receivers, we
further compute the estimated symmetric a�enuation:

α̃(τ ,ω) = â(τ ,ω) −
1

â(τ ,ω)
. (9)

Combining symmetric a�enuation and relative delay, we are
able to separate signals from the two sources. �e next step is
to compute the energy histogram based on the a�enuation-delay
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Figure 9: �e mean absolute estimation error (in BPMhr )
with di�erent slot durations. �e slot duration of 0.7 second
gives the best estimation, with an error of 1.90 BPMhr .

values. For any given frequency that falls into the range that has
the same symmetric a�enuation and relative delay, we compute the
energy histogram by summing up the estimated energy in those
frequency ranges. Following this process, we eventually cluster
the frequencies that are from the same source and have similar
symmetric a�enuation and relative delay values.

4.3.4 Finding Cluster Peaks and Applying Binary Masking in 3D
Space. Next, we explain how we �nd cluster peaks, which each
correspond to a separate signal. In our problem, symmetric a�en-
uation and delay values from di�erent sources overlap with each
other, leading to poorly formed clusters that are hard to identify.
As a result, we cannot rely on normal peak �nding algorithms or
machine learning algorithms such as K-Means Clustering [33], or
CLIQUE [11] to identify the peaks.

Instead, we take advantage of the spatial diversity in our system.
If we place geophone x2 close to Alice, and x1 close to Bob, and
use x1(t) as the reference, then symmetric a�enuation of Alice’s
heartbeat signal is positive while symmetric a�enuation of Bob’s
heartbeat signal is negative. �en, we can use a simple binary mask
to assign each a�enuation-delay pair to either Alice or Bob.

4.3.5 Estimating Target Heart Rate. Once signals from di�erent
sources are properly separated, we perform inverse STFT to return
them to the time domain. We then apply the heartbeat detection
algorithm discussed in [27] to extract the heartbeats. Namely, we
compute the signal power, calculate the sample auto-correlation
function (ACF), �nd peaks in the sample ACF results [7], and �-
nally convert the peak locations to corresponding heartbeat pulses.
Once we obtain the heart rates, we associate each heart rate to
the correct person on the bed, based on the location information.
Meanwhile, we also apply our respiratory rate estimation algorithm
in Section 3.2 on each heartbeat signal to estimate each subject’s
breathing rate.

5 VITALMON TESTBED

Ampli�er and ADC: In our testbed, we use two SM-24 geophones
[4] to track the heart rate and respiratory rate. �e raw analog signal
from each geophone is �rst ampli�ed through its own ampli�er
circuit whose ampli�cation is 200. �en, the ampli�ed signals are
fed into a 12-bit analog-to-digital converter (ADC) on an Arduino
Due [1] whose range is 0 to 3.3 V and sampling frequency is 2.5
kHz. Meanwhile, the two geophone signals are synced through the
internal clock of the Arduino Due. Figure 10 shows the experiment
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Figure 10: Our prototype bed. We install two geophone
boards that are sandwiched between the mattress and the
frame, one on each side of the bed.
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Figure 11: When we gently tap the prototype bed, response
from a vertical geophone (a) is much more crisp (shorter os-
cillation) than the response from a horizontal geophone (b).

se�ing with two participants on our prototype bed. �e bed has a
memory foam ma�ress and a steel frame.

Vertical vs Horizontal Geophones: Many geophones respond to
vibrations in a single direction, although more complex geophones
that can sense vibrations in multiple directions are available. In
our experiments, we have tried vertical geophones (responding to
vibrations in the z direction in Figure 10) and horizontal geophones
(responding to vibrations in the x − y plane in Figure 10). �rough
experimentation, we choose vertical geophones in our testbed. We
explain the reason below.

Our �rst intuition was to choose horizontal geophones. Each
heartbeat is mainly caused by the sudden ejection of blood during
the ventricle systole. �e direction of such momentary ejection �rst
goes from the ventricle to the aorta and then gets split to di�erent
blood vessels of a human body. Due to such directionality, the
strongest vibration is along the head-foot direction (in the x − y
plane). Intuitively, we would like to capture the strongest vibration
by using multiple horizontal geophones.

However, when we consider the human body, the bed, the �oor
and our system as a whole piece, we �nd horizontal geophones
a poor choice because beds are designed to allow the joints to be
underdamped on the x − y plane, yielding more horizontal oscilla-
tions. Such oscillations usually last for more than 1 second, which
is one heartbeat cycle, such that a heartbeat may last long enough
to a�ect the following heartbeat(s). On the other hand, we �nd
vertical geophones experience much smaller and shorter oscilla-
tions because oscillations in the z direction are damped against
the �oor.As a result, horizontal geophones and multi-dimension

S1 S2

G2

G1

G3

G4

G5

G6

Figure 12: �is �gure shows the top view of a bed, that has
two sources s1 and s2. Here we show two example installa-
tion plans. �e plan marked by red dashed lines represents
a poor installation where two sources have same symmetric
attenuation and relative delay. �e plan marked by green
solid lines is a good installation.

geophones that can measure horizontal vibrations are not suitable
for our system.

Figures 11 (a) and (b) show the responses from a vertical geo-
phone and a horizontal geophone when we lightly tap the bed just
once. For each signal, we normalized the amplitude to observe how
long the oscillation lasts. �e tapping motion occurred at time 0.2
second. �e vertical oscillation lasted for roughly 0.3 second, while
the horizontal oscillation lasted for more than 1.8 seconds.

Geophone Placement: Next, we carefully consider how the two
geophones should be placed on the bed. Our heartbeat separation
algorithm involves inferring the symmetric a�enuation and relative
delay information from the amplitude and phase of frequencies in
the signal STFT. To avoid any ambiguity of phase delay caused by
phase wrap [14], we should not separate the two geophone sensors
by more than half of the wavelength of the signal. Fortunately, in
our case, this requirement is easy to satisfy because the wavelength
of the heartbeat signal is usually much larger than the length of a
regular bed. For example, for a heartbeat signal whose rate is 60
bpm, its wavelength roughly is 1 km.

Our technique separates signals from di�erent sources by their
unique spatial signatures. As a result, when we install geophone
sensors, we need to make sure there is di�erence between the
sources’ spatial signatures. Suppose the two hearts’ positions are
s1 and s2, and the two geophones’ positions are x1 and x2. �en we
need to the following inequality is satis�ed

| |x1s1 | |
| |x1s2 | |

,
| |x2s1 | |
| |x2s2 | |

,

where | |x1s1 | | is the distance between x1 and s1. In Figure 12, we
illustrate six possible geophone positions named G1, …, and G6 in
the clockwise sequence and the two heartbeat locations. In this
example, we cannot place the following geophone pairs, (G1,G4),
(G2,G3), and (G5,G6). Any of the rest of the combinations could
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Figure 13: CDF (a) and box plot (b) of the respiratory rate es-
timation error when we have a single subject, with the pro-
cessing window of 30, 35, and 40 seconds. Window length of
40 seconds has the best results – mean estimation error of
0.38 BPMr r , and median error of 0.22 BPMr r , over 525 sam-
ples – which is then adopted in the rest of the evaluation.

work well for our purpose. In our testbed, we mount the two
geophones according to (G6,G2) in the diagram.

6 EVALUATION
In this section, we use our testbed to evaluate VitalMon in the
following aspects: (1) estimating the respiratory rate for a single
subject, (2) estimating the target subject’s heart rate when two sub-
jects are present, and (3) estimating the target subject’s respiratory
rate when two subjects are present. Also, we have a discussion on
the real world deployment.

6.1 Monitoring a Single Subject’s Respiratory
Rate

We conducted 525 experiments and recorded more than 350 minutes
data from a total of 23 subjects. We report the respiratory rate
estimation error as the absolute di�erence between the estimated
BPMr r and the ground truth BPMr r .

Participants: We had a total of 23 healthy volunteer participants
for this experiment, including 14 males and 9 females. �e mean
age of the participants was 25.14 years with a standard deviation
of 3.42 years. �e youngest participant was 21 years old while the
oldest was 34 years old.

During each experiment, subjects were asked to lie on the proto-
type bed and breathe at a certain rate for the duration of 40 seconds.
Speci�cally, we played a metronome at 1 tick per second and asked
the subjects to breathe in and out every 2, 3, 4, 5, or 6 ticks (the
respiratory rate during each experiment was thus �xed). We manu-
ally monitored the participant’s breathing rate by observing how
his/her chest moved during the experiment. Each subject went
through at least 20 experiments and in total we conducted 525
experiments.

Figures 13(a) and (b) show the cumulative distribution function
(CDF) and a box plot of the estimation error with di�erent pro-
cessing window lengths. Both plots show that larger window sizes
yield lower estimation errors: we have mean error of 0.38 BPMr r ,
and median error of 0.22 BPMr r , when the window length is 40 sec-
onds. In the rest of the evaluation, we use the processing window
of 40 seconds. We also note that a median estimation error of 0.22
BPMr r and a mean estimation error of 0.38 BPMr r are be�er than
many other systems when estimating the breathing rate for a single
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Figure 14: We compare the heart rate estimation error of
our algorithm with the ACF-based heartbeat separation al-
gorithm: (a) CDF, and (b) box plot of the estimation error.
Our algorithm yields much lower estimation error.

subject. For example, the estimation error reported in [13, 21] is
0.47 and above 2 BPMr r , respectively.

6.2 Monitoring Target Heart Rate when
Multiple Subjects are Available

In this part of the evaluation, we conduct more than 3000 exper-
iments and record more than 33 hours of geophone data from a
total of 35 subjects. We compare the estimated BPMhr against the
ground truth BPMhr measured by a medical grade pulse oxime-
ter [6] and report the estimation error.

Participants: We had a total of 35 healthy volunteer participants
for this experiment, including 19 males and 16 females. �e mean
age of the participants was 25.26 years with a standard deviation
of 3.25 years. �e youngest participant was 21 years old while the
oldest was 35 years old.

6.2.1 Mean Heart Rate Estimation Error. We �rst conducted a
series of experiments to evaluate how our algorithm performs over
a large range of heart rates while two subjects share the prototype
bed (without gross body motions). To ensure we evaluate our
system over a large range of heart rates, we asked one of the two
subjects to exercise (e.g. running outdoor, climbing stairs, etc.) for
a few minutes before each experiment. �e participants lay on their
back in this set of experiments.

We collected 952 experiments in this part, including a large range
of heart rates that range from 43 to 137 BPMhr . Figure 15 shows
the estimation error over di�erent heart rate ranges. Based on the
ground truth heart rate collected by a pulse oximeter, we group the
4304 samples (we have two samples per experiment) into 6 groups:
< 60, [60, 70), [70, 80), [80, 90), [90, 100), and ≥ 100. �e median and
the mean of overall estimation error over more than 4000 samples is
0.72 and 1.90 BPMhr , respectively. We note that this result, which
evaluates two subjects together, is in the range of other systems
that detect a single person’s heart rate (e.g., mean error of 1.17
BPMhr in [13] and mean error around 2 BPMhr in [32]).

Comparison with the ACF-based Approach: We next compare
our algorithm with the direct ACF-based heartbeat detection algo-
rithm (results shown in Figure 14), where we use our ACF-based
heart rate estimation algorithm, but don’t �rst separate the signal.
Instead, we assume geophone x1’s signal is dominated by s1(t), and
use the ACF-based heartbeat detection algorithm in [27] to directly
count the heartbeats in x1(t) for s1. Similarly, we run the same
algorithm on x2(t) to count heartbeats for s2. We show that our



VitalMon: Geophone Based Heart Rate and Respiratory Rate Monitoring SenSys ’17, November 6–8, 2017, Del�, Netherlands

<
6
0

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

>
=
 1

0
0

Ground Truth (BPM
hr

)

0

1

2

3

4

5

E
s

ti
m

a
ti

o
n

 E
rr

o
r 

(B
P

M
h

r)

Figure 15: When two subjects share a bed, average heart
rate estimation errors are shown for each of the following
heartbeat rate ranges: < 60, [60, 70), [70, 80), [80, 90), [90,
100), ≥ 100. Over more than 1900 samples, our mean error is
1.90 BPMhr , and median error is 0.72 BPMhr .

Figure 16: �e box plot of the heart rate estimation error
when two subjects share a bed and lie in di�erent postures,
including lying on back/stomach/le�/right. Our mean esti-
mation error is below 2.5 BPMhr and median error is below
0.74 BPMhr regardless of the posture, suggesting our system
is robust against di�erent lying postures.

algorithm has a much lower estimation error, mean error of 1.90
BPMhr , compared to the ACF based algorithm whose mean error
is 66.53 BPMhr . �e ACF-based separation approach works poorly
because it o�en captures both heartbeats from each geophone sig-
nal.

6.2.2 The Impact of Lying Posture. In this part, we conducted
1203 experiments to evaluate the impact of lying posture on our
performance. During each experiment, two subjects were asked to
adopt one of the following postures: (1) lying on back, (2) lying on
stomach, (3) lying on his/her le� side, and (4) lying on his/her right
side. �e length of each experiment is again 40 seconds.

Figure 16 shows the box plot of the heart rate estimation error
for di�erent lying postures. �e results show that our system is
robust against di�erent lying postures – the mean estimation error
for lying on back, stomach, le�, and right is 1.75, 1.62, 2.17, and 2.47
BPMhr , respectively, while the median error is 0.61, 0.57, 0.73, and
0.70 BPMhr . We note that the estimation error when the subject
was lying on the right is slightly higher because the heart position
is slightly further away from the ma�ress in this posture.

6.2.3 The Impact of Di�erent Ma�ress Type. We also conducted
901 experiments to evaluate the impact of di�erent ma�ress types,
including a memory foam ma�ress (our default ma�ress), a spring
ma�ress, and a hardwood ma�ress. Figure 17 shows that the mean
estimation error for these three types of ma�resses is 1.85, 2.44,
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Figure 17: CDF of the heart rate estimation error when two
subjects share a bed with di�erent mattress types. A spring
mattress has slightly higher estimation error than a hard-
wood or a memory foam mattress.

and 1.53 BPMhr , respectively, while the median error is 0.73, 0.88,
and 0.66 BPMhr . �e results are as expected – among these three
ma�ress types, a hardwood one adds to the least oscillations to
the geophone signal while a spring ma�ress has the most oscilla-
tion. However, we argue that even with the spring ma�ress which
gives the highest estimation error, the estimation accuracy is still
su�cient for most applications.

6.3 Monitoring Target Respiratory Rate When
Multiple Subjects are Present

In this part of the evaluation, we conducted 1503 experiments on our
prototype bed and recorded more than 16 hours of data. During each
experiment, we didn’t give any instructions on how the subjects
should breathe. We evaluate the performance of our respiration
detection algorithm by comparing the estimated respiratory rate
against the ground truth measured by a Zephyr bioharness belt [8]
and report the estimation error.

Participants: We had a total of 28 healthy volunteer participants
for this experiment, including 15 males and 13 females. �e mean
age of the participants was 24.79 years with a standard deviation
of 2.99 years. �e youngest participant was 21 years old while the
oldest was 34 years old.

Experiment Procedure: We conducted more than 1500 experi-
ments and evaluated our algorithm over a large range of respiratory
rates, from 8.61 to 25.09 BPMr r . Before experiments, some subjects
were asked to exercise, including running, climbing stairs, etc.

Based on the respiratory rate measured by a Zephyr belt, we
grouped the 3006 samples into 5 groups: <12, [12, 15), [15, 18),
[18, 21), and ≥21 BPMr r . Figure 18 shows that the overall mean
estimation error across more than 3000 samples is 2.62 BPMr r ,
while the median error is 1.95 BPMr r . We note that this result is
worse than our single-person breathing rate estimation because we
have to go through two levels of indirection in estimate breathing
rate when multiple people share a bed. In our on-going work, we
are developing techniques to improve our performance in this case.

Next, we evaluate how di�erent types of sleep postures a�ect
our estimation error. Figure 19 shows that lying postures have li�le
impact on estimating respiratory rate – the average estimation
error for these di�erent postures (lying on back/stomach/le�/right)
is 2.77, 2.36, 2.68, and 2.40 BPMr r , respectively while the median
error is 2.15, 1.66, 2.09, and 1.67 BPMr r .
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Figure 18: When two subjects share a bed, mean breathing
rate estimation errors are shown for each of the following
breathing rate ranges: < 12, [12, 15), [15, 18), [18, 21), ≥ 21
– 2.51, 2.53, 2.42, 2.90, 3.09 BPMr r , respectively. �e average
error rate across all the 2406 samples is 2.62 BPMr r , while
the median error is 1.95 BPMr r .

6.4 Discussion on Real World Deployment
Real world deployment of our system could potentially enable quite
a few interesting applications. So far, we have shown our system
can monitor heart rate and respiratory rate for one or two people on
a bed. We have found our system is also able to detect a user’s gross
body motions, or smaller activities such as snores during sleep.
�ese functions combined , we could build a more sophisticated
sleep monitoring system that can accurately detect a person’s sleep
stage and evaluate the sleep quality. To achieve this objective, we
need to carefully tune several system parameters to detect and
classify these �ne-grained information. One possible solution is to
add more geophone sensors at di�erent locations to form a small-
scale sensor network that facilitates more accurate separation of
various target signals.

7 RELATEDWORK
In this section, we categorize di�erent vital sign monitoring systems
in two ways: (1) systems which detect the heart rate and respira-
tory rate of a single person, e.g. [13, 16–19, 24, 27, 30, 32, 40, 52];
(2) systems which detect heart rate and respiratory rate of two
people simultaneously, such as the system shown in [10, 32]. Also,
we summarize their signal processing methods for heart rate and
respiratory rate estimation.

7.1 Vital Sign Monitoring of a Single Person
�ere are diverse systems proposed to detect heartbeats and respi-
ration of a single person. So far, it is the most commonly studied
�eld.

Sensors installed under the thorax area: Bu et al. [19] inserted
a piezoelectric sensor which measures the pressure �uctuation due
to heartbeats and respiration. �e detected signal is processed
by Empirical Mode Decomposition and the vital sign signals are
reconstructed by summing up the signal within the prede�ned
frequency range. Bruser et al. [18] packaged a Wheatstone bridge
of four sensitive load cells onto one slat from the sla�ed frame and
measured the vibration caused by heartbeats. An unsupervised
learning technique is used to extract the shape of a single heart
beat from the signal. In [17], an array of photodetectors under the
ma�ress are used to detect the change of re�ected and sca�ered

Figure 19: Box plot of the breathing rate estimation error
when two subjects share a bed and lie in di�erent postures,
including lying on back/stomach/le�/right. �e average es-
timation errors for these di�erent postures are very close to
each other.

light caused by vibration. �e heartbeat and respiration signals
can be separated by applying a simple low-order high-pass �lter.
S̆prager et al. [52] used an optical sensor which transmi�ed and
received interferometric signal to capture optical variation caused
by vibrations from heartbeat and respiration. Later a wavelet-based
decomposition technique was applied to extract heartbeats and
respiration signal from the received signal. Kortelainen et al. [30]
deployed several pressure sensitive foils under the ma�ress. �e
heartbeats were extracted from the channel averaged cepstrum
based on Fourier transformation, while respiration is calculated
by an adaptive principal component analysis. Aubert et al. [13]
put a foil pressure sensor in the thorax area under a thin ma�ress
to detect vital signs during sleep. �e heart rate and respiratory
rate are obtained from analyzing the autocorrelation function a�er
applying appropriate bandpass �lters.

Sensors that requires special cushion: Heise et al. [24] deployed
four hydraulic-transducer tubes under the ma�ress and showed
three possible signal processing strategies (a Window-based Peak-
to-Peak Deviation algorithm, a K-means clustering algorithm, and a
Hilbert transform algorithm) to extract the heartbeats. Yamana [54]
designed an ultrasound transmi�er and receiver system mounted
under a plywood support. �e system is placed under the ma�ress
and measures the shape change of the plywood support. A simple
bandpass �lter is applied to separate the heartbeat signal.

Sensors installed under the bed post: Nukaya et al. [40] pro-
posed to use a piezoceramic system to detect heartbeats. Four
sensors were bonded to two metal plates on top and bo�om, then
sandwiched between �oor and bed posts. A simple bandpass �lter
was applied to get the heartbeat signal. Brink et al. [16] built a
set of four optical load cells which were installed under each bed
post and directly �nd the heartbeats as the local maximums a�er
low-pass �ltration.

Wearable Sensors: Phan et al. [45] uses a chest belt with a built-in
biaxial accelerometer to measure the vibrations on the surface of the
chest cavity. A bandpass �lter is applied to extract the respiration
signal, and a combination of envelope detection and peak �nding
algorithm is used for estimating the heart rate.

Mobile Sensors: Nandakumar et al. [37] detects sleep apnea events
within a meter by turning a smartphone into a sonar system. �e
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system emits frequency-modulated sound signals and detects the
frequency shi�s of the re�ections due to chest movements.

Sensors that can be attached to anywhere on the bed frame:
Jia et al. [27] proposed a heartbeat monitoring system based on an
on-the-shelf geophone which could be inserted anywhere between
a ma�ress and a bed frame. A combination of low-pass �lter, sample
auto-correlation function and peak �nding algorithm are used to
extract the periodicity of heartbeats. An evaluation of real world
data varying di�erent types of bed and house environment shows
the possibility of using the system in daily heartbeat monitoring.

7.2 Vital Sign Monitoring of Multiple People
Only a few papers addressed detecting multiple people’s vital signs
simultaneously. Adib et al. [10] use a wireless radar to measure the
distance change of a human chest, due to heartbeats and respiration.
�e device can send Frequency Modulated Carrier Waves (FMCW)
which can isolate signals from di�erent distances, and then estimate
the heart rate and respiratory rate of multiple people via FFT. Liu et
al. [32] use WiFi to measure the Channel State Information (CSI) of
the re�ections o� the human body. �e system takes the advantages
of Received Signal Strength (RSS) from multiple subcarriers and
estimates the heart rate and respiratory rate by using a power
spectral density based algorithm. RSS values are sensitive to the
multipath situation in the environment, and therefore wireless
systems that are based on RSS readings may be a�ected by the
changes in the environment.

8 CONCLUDING REMARKS AND FUTURE
DIRECTION

In this paper, we discuss and evaluate an unobtrusive, vibration-
based vital sign monitoring system during sleep. Our system centers
around a geophone sensor that can sense the vibration velocity
caused by ballistic force. Compared to earlier geophone-based in-
bed vital sign monitoring systems that could only detect heartbeats
from a subject lying in bed, our system is signi�cantly improved.
First, it can monitor the subject’s breathing rate, even though geo-
phones cannot directly detect breathing. Second, it can track the
subject’s heart rate and breathing rate when he/she shares the bed
with another person. In this case, vibrations caused by multiple
heartbeats are mixed together and need to be separated. A�er in-
volving 86 participants and collecting 56 hours of geophone data,
we show that our system is accurate and can work in di�erent
scenarios (e.g., lying postures, ma�ress types).

Going forward, there are several important directions we plan to
investigate, including (1) obtaining be�er signal-to-noise ratio for
more accurate heart rate and respiratory rate monitoring; (2) under-
standing the physical respiration phenomenon be�er and adjusting
our respiration model accordingly; (3) investigating the time and
frequency characteristics of gross body motions and updating our
model accordingly.
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